

 1

Mensch Computer
TM

Developer Guide

 2

© Copyright 2006
The Western Design Center, Inc.
2166 East Brown Road
Mesa, Arizona 85213
U.S.A.

All rights reserved. Reproduction in any manner, in whole or in part, is strictly
prohibited without the written permission of The Western Design Center, Inc.

W65C02, W65C134, W65C816, W65C265, Mensch ROM Monitor, Mensch Operating
System, MenschWorks and Mensch Computer are trademarks of The Western Design
Center, Inc.

Apple is a trademark of Apple Computer, Inc.

CITIZEN and GSX-190 are trademarks of Citizen America Corporation.

Com Log is a trademark of The Com Log Company, Inc.

Densitron is a trademark of Densitron Corporation.

SEGA and 6-Button Arcade are trademarks of SEGA.

SG ProPad is a trademark of Q-J.

Toshiba is a trademark of Toshiba.

Information in this document is subject to change without notice and does not represent a
commitment on the part of The Com Log Company, Inc. or The Western Design Center,
Inc.

 3

Thank you for choosing the state-of-the-art features of the W65C265S microprocessor
from Western Design Center. This manual describes the operating system, library
subroutines, connector pinouts, and other useful information about the Mensch Computer
development platform.

The Mensch ROM Monitor and Mensch Operating System were developed by the Com
Log Company, Inc. for the Mensch Computer.

For best results, we recommend that you please carefully read this manual completely
before you attempt to develop applications on the Mensch Computer. This manual
contains important information on the proper use of the Mensch Operating System and its
library of subroutines.

 4

NOTICE

The Western Design Center, Inc. has made every attempt to ensure that the information in
this manual is complete and accurate. However, WDC assumes no liability for errors, or
for any damages that result from the use of this document or the related products.

Users of the Mensch Computer, especially developers, should note that it is both possible
and relatively simple to connect any microcomputer equipment to external devices, and
then to harm or destroy those devices (or anything that they may control). WDC assumes
no liability for any connections or use of the W65C265S microprocessor, the Mensch
Computer, and associated firmware or software.

Nothing herein shall be construed as a recommendation to use the W65C265S or Mensch
Computer in violation of existing patents or other rights of third parties.

Information in this document is subject to change without notice and does not represent a
commitment on the part of The Western Design Center, Inc. or The Com Log Company,
Inc. for future products.

 5

TABLE OF CONTENTS
INTRODUCTION .. 14

IC MEMORY CARDS.. 15
COMMUNICATIONS.. 15
MENSCH COMPUTER AVAILABILITY.. 16

CONFIGURATION ... 17
CPU MODULE ... 17

Power Control... 18
CHARGER Jack... 18
CHARGING Indicator ... 18
POWER Indicator .. 18
RESET Button.. 18
Internal Speaker & HEAD PHONES Jack... 18
VOLUME Control .. 18
Expansion Connectors ... 18
Serial Port Connectors ... 19
Memory Map .. 19
Plug-In IC Memory Cards ... 20

LowICCard ... 20
HighICCard... 20

DISPLAY... 21
Contrast Control... 21
Cabling and Connections... 22
Programming Support ... 22
Alternative I/O Usage... 23

KEYBOARD .. 24
Connecting the Keyboard... 24
Programming Support ... 25
Keyboard Alternatives .. 25

PRINTER .. 26
Connecting the Printer module.. 26
Connecting Other Printers... 26
Programming Support ... 27
Alternative I/O Usage... 27

MODEM.. 28
Connecting Modems... 28
Programming Support ... 29
Alternative I/O Usage... 29

PC LINK .. 30
Connecting the Mensch Computer to a PC ... 30
Direct Connection To Another Mensch Computer ... 31
Connecting To Other Personal Computers ... 31
Programming Support ... 31
Alternative I/O Usage... 31

CONTROLLER .. 32
Connecting the SEGA Game Controller ... 32
Connecting Other Games Controllers ... 32
Programming Support ... 33
Interpreting Controller Status Codes... 33
Alternative I/O Usage... 34

POWER SUBSYSTEM .. 34
External Charger/Power Module .. 34

 6

Internal Battery Pack ... 35
Alternate Power Configurations .. 35

INITIAL CHECKOUTS.. 36
APPLYING POWER... 36

System Status Bar... 37
time field ... 37
date field ... 37
title .. 37
battery status field... 37

MENSCH OPERATING SYSTEM .. 39
SYSTEM MANAGEMENT .. 39

Reset.. 39
Initialization Sequence... 39

Performed by Mensch Monitor ... 39
Performed by the EPROM Mensch Operating System ... 40

TIME-OF-DAY CLOCK/CALENDAR .. 40
Alarm Function .. 40
Programming Support ... 41

POWER MANAGEMENT ... 41
Battery Monitoring ... 41
Low-Power Mode ... 41
Voltage Detection Circuitry ... 42
Programming Support ... 42

MENUING SUPPORT... 43
Programming Support ... 43

MAIN MENU .. 44
1) SETUP MENU.. 45

1) DISPLAY & SET TIME ... 46
2) DISPLAY & SET DATE ... 46
3) DISPLAY & SET ALARM ... 47
4) Reserved .. 48
5) Reserved .. 48
6) INITIALIZE MODEM... 48
7) VIEW MODEM SETUP .. 50
8) RETURN TO MAIN MENU.. 51

2) DEBUG MENU ... 52
1) ALTER MEMORY .. 53
2) DISPLAY REGISTERS ... 54
3) SET BREAKPOINT ... 54
4) FILL MEMORY ... 55
5) DUMP TO SCREEN .. 56
6) ASCII Screen Dump ... 57
7) Reserved .. 58
8) RETURN TO MAIN MENU.. 58

3) TEST MENU.. 59
1) KEYBOARD TEST .. 60
2) DTMF TEST ... 61
3) MODEM TEST... 62
4) TEST PRINTER ... 63
5) GAME CONTROLLER... 64
6) SOFTWARE VERSION .. 65
7) GRAPHICS TEST .. 65
8) RETURN TO MAIN MENU.. 65

4) PCMCIA CARD MENU .. 66
5) GOTO PROGRAM... 67
6) LOAD & DUMP MENU.. 68

 7

1) LOAD S28 Records... 69
2) Reserved .. 70
3) DUMP S28 Records .. 71
4) DUMP to PRINTER ... 73
5) DUMP to Screen ... 75
6) ASCII Screen Dump ... 76
7) ALTER MEMORY .. 77
8) RETURN TO MAIN MENU.. 77

7) ROM MONITOR ... 78
8) RUN PCMCIA SHELL.. 79

PROGRAMMING THE MENSCH COMPUTER.. 80
SERIAL PORT PROGRAMMING CONSIDERATIONS.. 80

Baud Rate Generation.. 80
Support Subroutines ... 81

Keyboard I/O Software... 81
Decoding Keyboard Status ... 81
Decoding Keyboard Input .. 81
Commanding The Keyboard.. 81
Support Subroutine .. 83

Printing From Application Programs ... 83
Support Subroutines ... 83

Modem Communication... 84
Support Subroutines ... 84

PC Link Programming... 85
Support Subroutines ... 85

CONTROLLER PORT USAGE.. 86
Game Programming ... 86

Support Subroutines ... 86
USING THE LCD DISPLAY... 87

Accessing The Display ... 87
Support Subroutines ... 87

Displaying Text... 88
Support Subroutines ... 88

Displaying Graphics ... 89
Support Subroutines ... 89

LCD Screen Printing.. 90
Support Subroutines ... 90

SOUND GENERATION... 91
Support Subroutines... 91

DOS-COMPATIBLE FILE SUPPORT... 92
Support Subroutines... 92

SYSTEM FUNCTIONS.. 93
Time-Of-Day Clock/Calendar.. 93

Support Subroutines ... 93
Programmable Alarm... 93

Support Subroutines ... 93
Interval Tracking ... 94

Counter Usage ... 94
Stopwatch Usage ... 94

Power Management ... 94
Support Subroutines ... 94

MENSCH FORTH SUPPORT.. 95
APPENDICES... 96

APPENDIX A – REPLACING THE BATTERY PACK .. 96
APPENDIX B – FIRMWARE SUBROUTINE LIBRARY .. 97

 8

Library Vector Table .. 97
Power Management Support ... 97
Development Interface Support ... 97
Clock/Calendar/Alarm Support... 97
Audio Output Support.. 97
Game Controller Support... 97
Serial I/O – Baud Rate Generators.. 97
Serial I/O – Keyboard ... 98
Serial I/O – Printer ... 98
Serial I/O – Modem... 98
Serial I/O – PC Link ... 98
General I/O Stream Support .. 98
Print Screen Support .. 99
Liquid Crystal Display Support – General ... 99
LCD Support – Text Mode... 99
LCD Support – Graphics Mode ... 99
Menu Support ... 99
IC Card Support – General.. 99
IC Card Support – PCMCIA Disk Emulation.. 100
Timing and Counting .. 100
Miscellaneous .. 100
ROM Monitor Subroutines .. 101

Library Subroutine Descriptions ... 102
_Bin2BCD .. 102
_Box.. 103
_CHECK_VOLTAGE .. 103
_CHECK_YN .. 104
_Circle .. 104
_ClearColor ... 105
_ClearFill ... 105
_CLR_STPWTCH .. 106
_CONTROL_CONTROLLER_PORT ... 106
_CONTROL_DISPLAY ... 107
_CONTROL_INPUT .. 108
_CONTROL_KEYBOARD_PORT .. 109
_CONTROL_MODEM_PORT ... 110
_CONTROL_OUTPUT .. 111
_CONTROL_PC_PORT .. 112
_CONTROL_PRINTER_PORT.. 114
_DISP_LCD_HEADER .. 116
_DO_MAIN_MENU ... 117
_ENGAGE_LOW_POWER_MODE .. 117
_GET_A_PRINTER_ ... 117
_GET_BIN_NUM ... 118
_GET_CONTROLLER_DATA... 118
_GET_KEYBOARD_CHARACTER.. 119
_GET_MODEM_BYTE ... 119
_GetGrStatus... 120
_GetPoint ... 120
_HLine ... 121
_INIT_DP_POINTER .. 121
_Line... 122
_OS_SHELL.. 122
_Point ... 123
_PRINT_A_BYTE .. 123
_PtCode.. 123
_PtLn.. 124
_PtScreen ... 124
_RD_COUNT .. 124
_RD_STPWTCH... 125
_RESTORE_DP_POINTER .. 125

 9

_RETRIEVE_CONTROLLER_STATUS .. 126
_RETRIEVE_KEYBOARD_STATUS ... 126
_RETRIEVE_MODEM_PORT_STATUS ... 127
_RETRIEVE_PC_PORT_STATUS .. 128
_RETRIEVE_PRINTER_PORT_STATUS.. 129
_SELECT_MODEM_BAUD_RATE... 130
_SEND_A_MODEM_BYTE .. 130
_SEND_BEEP ... 131
_SEND_BEEP ... 131
_SEND_DTMF_DIGIT .. 132
_SEND_MODEM_STRING... 133
_SET_COUNT .. 133
_SetColor ... 134
_SetFill ... 134
_SetGraph.. 134
_SetGraphText .. 135
_SetText ... 135
_START ... 135
_TIME_DATE_CHK.. 136
_VLine.. 136
_WrDec .. 136
Alter_Memory ... 137
ASCBIN ... 138
BACKSPACE.. 138
BIN2DEC... 139
BINASC ... 139
CHANGE_DIRECTORY... 140
CLEAR_LCD_DISPLAY... 140
CLEAR_TO_END_OF_LINE ... 141
CONTROL_SPEAKER_AMP... 141
CONTROL_TONES ... 142
CREATE_DIRECTORY (Reserved!) ... 142
DIR_COMMD... 143
DISP_LCD_STRING.. 143
DISPLAY_PCMCIA_ERROR .. 144
DO_LOW_POWER_PGM... 145
Dump_1_line_to_Output .. 146
Dump_1_line_to_Screen ... 147
Dump_It ... 148
Dump_to_Output .. 149
Dump_to_Printer .. 150
Dump_to_Screen ... 151
Dump_to_Screen_ASCII .. 152
DUMPREGS.. 153
DumpS28 ... 154
FCLOSE .. 155
FDELETE.. 155
FGETBLOCK ... 156
FGETC... 156
FGETS ... 157
FGETW ... 157
FILELENGTH .. 157
FILL_Memory... 158
FINDFIRST ... 159
FNSPLIT ... 159
FOPEN... 160
FORMAT... 160
FPUTBLOCK.. 161
FPUTC ... 161
FPUTS.. 162
FPUTW .. 162

 10

FSEEK ... 163
GET_3BYTE_ADDR.. 164
Get_Address .. 165
GET_ALARM_STATUS.. 166
GET_BYTE_FROM_PC.. 166
GET_CHR ... 167
Get_E_Address.. 168
GET_HEX ... 169
Get_HiLo ... 170
GET_MODEM_RESPONSE ... 170
GET_PUT_CHR ... 171
Get_S_Address .. 172
GET_STR .. 173
GETDFREE .. 173
HEXIN ... 174
IFASC .. 175
IS_CARD_INSERTED ... 175
ISDECIMAL ... 176
ISHEX .. 177
LOG_DRIVE... 177
MENU_POINT.. 178
MENU_SETUP ... 179
MODEM_ANSWER ... 179
MODEM_DIAL .. 180
MODEM_HANG_UP ... 180
MODEM_REDIAL... 181
MOVE_BUFFER_TO_LCD .. 181
MOVE_PAGE_TO_BUF ... 182
POSITION_PIXEL... 182
POSITION_TEXT_CURSOR ... 183
PUT_CHR.. 183
PUT_STR... 184
RD_LCD_STRNG... 185
READ_ALARM .. 185
READ_DATE .. 186
READ_TIME .. 187
REMOVE_DIRECTORY (Reserved!) .. 187
RESET ... 188
RESET_ALARM .. 188
RETRIEVE_DISPLAY_STATUS ... 189
SBREAK .. 189
SELECT_COMMON_BAUD_RATE ... 190
SELECT_DISK ... 190
SEND_BYTE_TO_PC .. 191
SEND_CR .. 191
SEND_HEX_OUT... 191
SEND_SPACE... 192
SET_ALARM.. 193
SET_Breakpoint.. 194
SET_DATE.. 195
SET_TIME .. 196
STRCMP ... 196
UPPER_CASE .. 197
VERSION .. 197
WR_3_ADDRESS ... 198
WR_LCD_STRNG ... 198
WRITE_LCD_CHARACTER ... 199
WRITE_PIXEL... 199
XS28IN... 200

APPENDIX C – GLOSSARY ... 201
APPENDIX D – CONNECTOR PINOUTS .. 204

 11

Appendix D.1 – Internal Battery Connector ... 204
Appendix D.2 – Controller Connector... 204
Appendix D.3 – Serial Connectors... 205
Appendix D.4 – Display Cable Connector ... 205
Appendix D.5 – IC Card Connectors ... 206
Appendix D.6 – Expansion Connector .. 208

APPENDIX E – KEYCODE TO ASCII CONVERSION TABLES .. 210
APPENDIX F – BIBLIOGRAPHY / RECOMMENDED REFERENCES.. 215
APPENDIX G – DETAILED MEMORY MAP .. 217
APPENDIX H – S28 RECORD TRANSFER FORMAT.. 218

INDEX ... 219

 12

TABLE OF FIGURES
FIGURE 1: MENSCH COMPUTER PRIMARY COMPONENTS... 14
FIGURE 2: MENSCH COMPUTER ASSEMBLED... 15
FIGURE 3: MENSCH COMPUTER REAR PANEL .. 17
FIGURE 4: MENSCH COMPUTER CPU MODULE .. 17
FIGURE 5: MENSCH COMPUTER FRONT PANEL .. 18
FIGURE 6: IC CARD SLOTS ... 20
FIGURE 7: MENSCH COMPUTER IC MEMORY CARDS... 20
FIGURE 8: MENSCH COMPUTER DISPLAY MODULE.. 21
FIGURE 9: MENSCH COMPUTER CPU MODULE REAR PANEL.. 22
FIGURE 10: MENSCH COMPUTER KEYBOARD ... 24
FIGURE 11: MENSCH COMPUTER CPU MODULE REAR PANEL KEYBOARD CONNECTOR 24
FIGURE 12: MENSCH COMPUTER CPU MODULE REAR PANEL PRINTER CONNECTOR 26
FIGURE 13: PRINTER CABLING .. 26
FIGURE 14: MENSCH COMPUTER CPU MODULE REAR PANEL MODEM CONNECTOR 28
FIGURE 15: MODEM CABLING.. 28
FIGURE 16: MENSCH COMPUTER CPU MODULE REAR PANEL: PC LINK CONNECTOR......................... 30
FIGURE 17: PC LINK CABLING... 30
FIGURE 18: SEGA GAME CONTROLLER ... 32
FIGURE 19: MENSCH COMPUTER CPU MODULE REAR PANEL CONTROLLER CONNECTOR.................. 32
FIGURE 20: SEGA GAME CONTROLLER ... 33
FIGURE 21: MENSCH COMPUTER CHARGER/POWER MODULE .. 34
FIGURE 22: MENSCH COMPUTER REAR PANEL: CHARGER CONNECTOR.. 34
FIGURE 23: MENSCH COMPUTER RECHARGEABLE BATTERY PACK.. 35
FIGURE 24: MENSCH COMPUTER FRONT PANEL .. 36
FIGURE 25: MAIN MENU... 36
FIGURE 26: SYSTEM STATUS BAR BATTERY CONDITION NORMAL (CHARGED)...................................... 37
FIGURE 27: SYSTEM STATUS BAR BATTERY CONDITION: LOW (NEEDS CHARGING) 38
FIGURE 28: MAIN MENU ... 44
FIGURE 29: MAIN MENU TREE... 44
FIGURE 30: SETUP MENU.. 45
FIGURE 31: SETUP MENU TREE.. 45
FIGURE 32: DISPLAY & SET TIME... 46
FIGURE 33: DISPLAY & SET DATE ... 46
FIGURE 34: DISPLAY & SET ALARM .. 47
FIGURE 35: ALARM ENTRY PROMPT .. 47
FIGURE 36: SETUP MENU OPTIONS: #4 & #5 ... 48
FIGURE 37: INITIALIZE MODEM 1ST SCREEN BLINKS QUICKLY .. 48
FIGURE 38: INITIALIZE MODEM 2ND SCREEN (APPROX 5 SEC.) ... 49
FIGURE 39: INITIALIZE MODEM 3RD SCREEN W/ MODEM ID... 49
FIGURE 40: INITIALIZE MODEM... 50
FIGURE 41: VIEW MODEM SETUP 1ST SCREEN ... 50
FIGURE 42: VIEW MODEM SETUP 2ND SCREEN... 51
FIGURE 43: VIEW MODEM SETUP 3RD SCREEN... 51
FIGURE 44: DEBUG MENU .. 52
FIGURE 45: DEBUG MENU TREE ... 52
FIGURE 46: ALTER MEMORY PROMPT ... 53
FIGURE 47: ALTER MEMORY DISPLAY .. 53
FIGURE 48: DISPLAY REGISTERS .. 54
FIGURE 49: SET BREAKPOINT ... 54
FIGURE 50: FILL MEMORY: FIRST PROMPT... 55
FIGURE 51: FILL MEMORY: SECOND PROMPT ... 55
FIGURE 52: FILL MEMORY: THIRD PROMPT.. 55

 13

FIGURE 53: DUMP TO SCREEN: FIRST PROMPT ... 56
FIGURE 54: DUMP TO SCREEN: SECOND PROMPT .. 56
FIGURE 55: DUMP TO SCREEN: DATA DISPLAY ... 57
FIGURE 56: ASCII SCREEN DUMP: FIRST PROMPT .. 57
FIGURE 57: ASCII SCREEN DUMP: SECOND PROMPT ... 57
FIGURE 58: ASCII SCREEN DUMP: DATA DISPLAY .. 58
FIGURE 59: DEBUG ITEM #7 .. 58
FIGURE 60: TEST MENU.. 59
FIGURE 61: TEST MENU TREE ... 59
FIGURE 62: KEYBOARD TEST ... 60
FIGURE 63: TEST MENU - DTMF TEST .. 61
FIGURE 64: DTMF TEST SCREEN .. 61
FIGURE 65: MODEM TEST .. 62
FIGURE 66: TEST PRINTER .. 63
FIGURE 67: GAME CONTROLLER ... 64
FIGURE 68: GAME CONTROLLER ... 64
FIGURE 69: SOFTWARE VERSION.. 65
FIGURE 70: GRAPHICS TEST ... 65
FIGURE 71: PCMCIA CARD MENU PROMPT ... 66
FIGURE 72: PCMCIA CARD MENU ... 66
FIGURE 73: PCMCIA CARD MENU W/NO PROGRAMS .. 66
FIGURE 74: PCMCIA CARD MENU ERROR... 67
FIGURE 75: GOTO PROGRAM ... 67
FIGURE 76: LOAD & DUMP MENU.. 68
FIGURE 77: LOAD & DUMP MENU TREE.. 68
FIGURE 78: LOAD S28 RECORDS #1 .. 69
FIGURE 79: LOAD S28 RECORDS #2 ... 69
FIGURE 80: LOAD S28 RECORDS #3 ... 69
FIGURE 81: LOAD S28 RECORDS #4 ... 70
FIGURE 82: LOAD & DUMP MENU OPTION #2... 70
FIGURE 83: DUMP S28 RECORDS FIRST PROMPT .. 71
FIGURE 84: DUMP S28 RECORDS SECOND PROMPT .. 71
FIGURE 85: DUMP S28 RECORDS BRIEF .. 72
FIGURE 86: DUMP S28 RECORDS - LONG... 72
FIGURE 87: DUMP TO PRINTER FIRST PROMPT... 73
FIGURE 88: DUMP TO PRINTER SECOND PROMPT.. 73
FIGURE 89: DUMP TO PRINTER - BRIEF ... 74
FIGURE 90: DUMP TO PRINTER - LONG.. 74
FIGURE 91: DUMP TO SCREEN FIRST PROMPT .. 75
FIGURE 92: DUMP TO SCREEN SECOND PROMPT .. 75
FIGURE 93: DUMP TP SCREEN DISPLAY .. 75
FIGURE 94: ASCII SCREEN DUMP FIRST PROMPT.. 76
FIGURE 95: ASCII SCREEN DUMP SECOND PROMPT .. 76
FIGURE 96: ASCII SCREEN DUMP DISPLAY .. 76
FIGURE 97: ALTER MEMORY PROMPT .. 77
FIGURE 98: ALTER MEMORY EDIT SCREEN .. 77
FIGURE 98: ALTER MEMORY EDIT SCREEN .. 77
FIGURE 99: ROM MONITOR STARTUP PROMPT ... 78
FIGURE 100: ROM MONITOR COMMANDS.. 78
FIGURE 101: RUN PCMCIA SHELL.. 79
FIGURE 102: PCMCIA SHELL OPTIONS.. 79
FIGURE 103: MENSCH COMPUTER FRONT PANEL .. 96
FIGURE 104: REPLACING THE BATTERY PACK ... 96
FIGURE 105: SYSTEM STATUS BAR BATTERY CONDITION: NORMAL (CHARGED) 116
FIGURE 106: S28 MEMORY TRANSFER FORMAT... 218

 14

Introduction

The Mensch computer is a product idea which has finally achieved reality. Named after William D.
Mensch, Jr., founder, chairman and CEO of The Western Design Center, Inc. (WDC), it is the product of
many years of discussion, review and planning. Bill is well-known as the designer and patent holder of the
W65C02 and W65C816 microprocessors which were used in early Apple computers and Super Nintendos
and are being used in millions of products around the world today. He was honored in 1991 at the
Microprocessor Forum as one of the pioneers of the microprocessor industry. It has been Bill’s vision to
create a true solid state computer. The Mensch is not a game computer or a “business” computer. It is not
a PC nor does it compete in the PC marketplace. It is not a calculator, home controller or personal
organizer although it could be any of these. This new class of solid state computer can include a multitude
of user-specific applications supported by a single platform. It is based upon a philosophy which believes:
user empowerment does not require complexity but does require simplicity and usefulness without
intimidation.

Figure 1
Mensch Computer

Primary Components

RAM Serial Ports Timers

Masked
ROM

Tone
Generators W65C265 Micro-Controller

Mensch Serial
Keyboard

Serial
Printer Modem PC

CPU Module Slow Clock

SRAM EPROM

Fast Clock

Speaker
Circuit

Power Control
Logic

Controller Display

HiCard

LoCard

 15

Bill Mensch has designed the W65C265 microcomputer for his solid state computer and is the core of the
CPU module. This powerful chip has a CPU which is instruction-compatible with the W65C816
microprocessor and has four serial ports and eight 16-bit timers on-board. It also has twin tone generators
and internal RAM and ROM. The CPU module also has (2) of WDC’s VIAs (Versatile Interface
Adapters), the W65C22S, for external display and controller interfaces and power management control.
The Keytronics “space-saver” keyboard utilizes WDC’s 8-bit microcomputer, the W65C134S. The
W65C134S provides low power management features and the ability to program the keyboard via a
provided on-board 32K EPROM.

Figure 2
Mensch Computer

Assembled

The internal CPU instruction set is 100% compatible with the W65C816 CPU used in the Apple IIgs and
Super Nintendo computers as well as the 6502s used in Atari and Commodore computers. It is reasonable
to assume that some of the first 3rd-party applications on this solid state computer will be ported from these
computer platforms.

IC Memory Cards

The inclusion of IC Memory Cards into the design makes the Mensch hardware very versatile. A separate
“slow” clock, “low-power” mode and many power management features on the W65C265S allow it to be
used effectively in portable, battery-powered configurations. Though the IC cards appear to be memory
blocks to the Mensch, it can read and manipulate “files” on them. This allows the exchange of data with
DOS-compatible computers on a common physical media.

Communications

Four serial ports provide the Mensch with adaptability to many types of communication applications. The
low power, programmable keyboard uses one of the serial ports. The initial configuration additionally
allocates one port each for a serial printer, a modem and a direct link to another computer. These are all
generic serial ports which may be used for other purposes by specific application.

The telephone in it’s various forms, is rapidly becoming the most important appliance in our lives. The
Mensch offers a platform which supports telephone –related application.

 16

MenschWorks is an application IC Card for:
1) Terminal Emulation
2) E-Mail Terminal
3) MenschCall (textual preamble to a voice communication)
4) MenschMail (Mensch Computer –to-Mensch Computer screen-to-screen communication)

Mensch Computer Availability

The Mensch is manufactured and distributed to order and a limited number are products for qualified
developers.

 17

Configuration

The Mensch CPU module, Keyboard, and Display are packed in individual boxes for shipping. The
Keyboard and Display are easily connected to the CPU. The charger and peripherals attach to the Mensch
CPU module via connectors on the rear panel. (See Figure 3)

Figure 3
Mensch Computer

Rear Panel

CPU Module

The CPU module is the core of the Mensch. It contains the main board with the W65C265
microcontroller1. This also includes: both fast and slow clock circuits, appropriate power control logic, a
speaker circuit, RAM, EPROM, and connectors for external peripherals.

Figure 4
Mensch Computer

CPU Module

1 The Western Design Center, Inc. offers a variety of additional information on the W65C265 micro-
controller. (Refer to Appendix F – Bibliography for specific titles.)

RAM Serial Ports Timers

Masked
ROM

Tone
Generators W65C265 Micro-Controller

Mensch Serial
Keyboard

Serial
Printer Modem PC

CPU Module
Slow Clock

RAM EPROM

Fast Clock

Speaker
Circuit

Power Control
Logic

Controller Display

LowICCard
Card #1

HighICCard
Card #2

 18

Figure 5
Mensch Computer

Front Panel
Power Control

There is no power ON/OFF switch on the Mensch. A special low-power mode feature reduces power
consumption when the system is inactive. Power is never removed from the W65C265 chip itself 2.
Background operations in the Firmware maintain the time-of-day clock. The support software for this
resides in the masked ROM of the W65C265 chip. It can continue to operate even in low-power mode.

CHARGER Jack

The CHARGER jack is located on the rear panel of the CPU module. The external Charger/Power module
plugs into a standard wall outlet and provides a DC voltage to recharge the internal battery pack. (Refer to:
Power Subsystem section for more explanation.)

CHARGING Indicator

Whenever the system is charging the battery pack, the CHARGING indicator LED (red) will glow. (Refer
to: Power Subsystem section for more explanation.)

POWER Indicator

This green LED will glow whenever power (+5 volts) is available to the LCD display connector3.
Generally, when this LED is dark, there is not sufficient power available to operate the Mensch.

RESET Button

The user may force a system reset at any time by pressing the RESET button on the front panel of the CPU
module. (Refer to: RESET Initialization Sequence for more information.)

Internal Speaker & HEAD PHONES Jack

The Mensch allows application programs to generate sound via the speaker port. The internal amplifier is
connected to the internal speaker through a normally closed switch in the HEAD PHONES jack. External
headphones, or an external amplifier and speaker may be plugged into the jack on the front panel of the
CPU module, replacing the internal speaker in the circuit.

VOLUME Control

The output of the speaker port may be adjusted using the built-in VOLUME Control. This is just a
potentiometer feeding the internal amplifier. It is located on the rear panel of the CPU module.

Expansion Connectors

All relevant signals from the CPU module are available on the rear expansion connectors. These may be
used by developers to monitor internal activity, or interface new peripheral circuits to the Mensch. (Refer
to: Appendix D.6 for details of the expansion connector pinouts.)

2 Power is available to the W65C265 chip and “slow” clock circuitry whenever a battery is attached

to the internal battery connector. (Refer to: Power Subsystem for more explanation.)

3 The indicator does not require that the LCD display module be attached.

 19

Serial Port Connectors Ports Pinouts

 A block of four (4) serial port connectors is located in the center
 of the rear panel of the CPU module. (Refer to: Appendix D.3
 for details of the serial port connector pinouts.)

Memory Map

The Mensch Monitor resides in the 8K byte
mask ROM from $00:E000 to $00:FFFF. The
Mensch ROM Monitor executes an
initialization sequence after reset occurs4.

It turns on the external bus, checks locations
$00:8000-$00:8002 and jumps to $00:8004 if a
‘WDC’ is found. The Mensch ROM Monitor
uses this signaling to begin execution in then
internal ROM of the W65C265 chip, and the
switch under software control to external
EPROM in the Mensch. (Refer to: RESET
Initialization Sequence for more
information.)

The CPU module has a socket for a 256K
EPROM (32K bytes). This has been mapped
to address range: $00:8000-$00:DEFF. The
external portion: the Mensch Operating System
resides in the EPROM5. Refer to: Reset
Initialization Sequence for a description of
how this is used.

There is also a socket on the board for 32K
bytes of RAM. Initially, this RAM is reserved
for use by system firmware. This RAM chip
has been mapped to address range: $00:0200-
$00:7FFF in the Mensch configuration.

4 This feature may be used or disabled when the W65C265 is used in other configurations. It is

internal to the W65C265 chip, and does not require the Mensch Computer or the external
EPROM-based Mensch Operating System. (Refer to W65C265S INFORMATION,
SPECIFICATION, AND DATA SHEET or the Mensch Monitor ROM REFERENCE
MANUAL for details.)

5 Developers may choose to use this hardware configuration, but replace the EPROM with their
own custom firmware. While such an approach may be viable for specialized applications, it
restricts the use of other independently developed software.

S0 Keyboard 1 GND
S1 Printer 2 TXD
S2 Modem 3 +5 volts

S3 PC Link 4 RXD
 5 DSR
 6 DTR

Mensch Computer Memory Map
Address Range Function

$00:0000-$00:00FF W65C265S internal RAM,
 (Page #0)

$00:0100-$00:0138 RAM IRQ Vectors

$00:0139-$00:01FF W65C265S internal RAM

$00:0140-$00:02FF Mensch Computer Stack.

$00:0300-$00:7FFF Variables & buffers used by
 the Mensch OS in External
 RAM Memory

$00:8000-$00:DEFF “WDC” semaphore and
 Mensch Operating System
 in external EPROM

$00:DF00-$00:DFFF Reserved addresses and
 Mapped I/O

$00:E000-$00:FFFF W65C265S Internal ROM,
 monitor firmware.

$01:0000-$3F:FFFF Low IC Card Memory

$40:0000-$BF:FFFF High IC Card Memory

$C0:0000-$FF:FFFF Accessible via the
 Expansion Connector

 20

Plug-In IC Memory Cards

The Mensch has 32K bytes of internal RAM to be used by the firmware, operating system and specific
applications. Most memory in the system is assumed to reside on removable IC memory cards. The
Mensch is equipped with two slots of the PCMCIA form factor, supporting a subset of the Type II standard.
Additional memory for the Mensch may reside on either or both plug-in cards. The LowICCard has been
mapped to a base address of: $01:0000. The HighICCard had been mapped to a base address of: $40:0000.

Figure 6
IC Card Slots

Developers are encouraged to design their applications software to work with the Mensch Operating
System. This is most easily accomplished by locating their applications in the external memory cards and
using the subroutine library to access standard features of the system.

LowICCard

This bottom slot is labeled “LO” on the front panel. It is mapped into memory such that the lowest
available address is: $01:0000. The highest address usable in this slot is: $3F:FFFF.

HighICCard

This top slot is labeled “HI” on the front panel. It is mapped into memory such that the lowest available
address is $40:0000. The highest address usable in this slot is: $BF:FFFF.

Figure 7
Mensch Computer
IC Memory Cards

DOSTM File Support

IC cards conforming to the PCMCIA Type II standard are used on many portable palmtop and laptop
computers. Most of these portables are IBM-compatible and therefore use some version of the DOS
operating system. This allows the cards to be treated as file devices, like floppies, when transporting data.
The Mensch subroutine library provides support which allows programs to access DOS-compatible data
files on the IC memory cards. (Refer to: Programming The Mensch Computer, Using DOS-
Compatible File Support for more information.)

 21

 Display

The Mensch uses a liquid crystal display (LCD) which offers a 2.40” by 4.25” viewing area. The LCD and
associated electronics are mounted in a low profile case (7”W x 5.5”H x 1”D). The lightweight case is
attached to a swivel bracket which may hang on a wall or sit on a flat surface. It supports both character
mode and graphics mode. It will display text as sixteen lines of forty characters each. The graphics
resolution is 240 horizontal and 128 vertical dots. This module contains a Densitron LCD
(LM3229A128G240SNG) and a Toshiba controller (T6963C) 6 board.

Figure 8
Mensch Computer

Display Module

Contrast Control

The readability of the display may be adjusted using the contrast potentiometer located on the right-hand
side of the unit.

6 The data sheet on the LM3229A128G240SNG and Application Notes for the T6963C LCD

Graphics Controller from Densitron provide a detailed description of this display and its
operation.

 22

Cabling and Connections

A ribbon cable with 24 pin connectors connects the Mensch LCD module to the Mensch CPU module.
This is a symmetrical cable7 and the connectors are keyed for proper insertion. Connect either end of the
cable to the CPU module using the matching connector on the rear panel.

Figure 9
Mensch Computer CPU Module

Rear Panel

Plug the remaining end of the cable into matching connector on bottom of the LCD display module
encasement. (See Figure 8)

There is a small adaptor board between the T6963C controller and the 24-pin connector. This
accommodates the contrast control potentiometer.

Programming Support

The Mensch Operating System provides several library subroutines for programmers to use when writing to
the LCD screen.

This basic set may be used as building block functions. Programmers may use them to develop more
sophisticated libraries of their own. (Refer to: Appendix B – Firmware Subroutine Library for more
information on using these subroutines.)

Those library subroutines which support generalized output streams may be configured to write to the LCD
screen. Refer to the description of the: CONTROL_OUTPUT subroutine for specific details.

7 The ribbon cable is symmetrical, such that there is direct one-to-one connection between each pin

and it’s corresponding, identically numbered, pin on other connector. (Refer to: Appendix D.4 –
LCD Display Cable Connector (Pinouts) for signal descriptions.)

 23

Display Support Subroutines

_Box _VLine

_Circle _WrDec

_ClearColor CLEAR_LCD_DISPLAY

_ClearFill CLEAR_TO_END_OF_LINE (Text line)

_CONTROL_DISPLAY (Power) DISP_LCD_STRING (@ Text Cursor Position)

_DISP_LCD_HEADER MENU_POINT

_DO_MAIN_MENU MENU_SETUP

_HLine MOVE_PAGE_TO_BUFF

_Line MOVE_BUFFER_TO_LCD

_Point POSITION_PIXEL

_PtScreen POSITION_TEXT_CURSOR (@ Row & Column)

_SetColor RD_LCD_STRNG

_SetFill RETRIEVE_DISPLAY_STATUS

_SetText WRITE_PIXEL

_SetGraph WR_LCD_STRNG

_SetGraphText WRITE_LCD_CHARACTER (@ Text Cursor Position)

_TIME_DATE_CHK

Alternative I/O Usage

Other LCD modules may be used with the T6963C controller module, providing they do not require
different signals. This allows the Mensch to be a development/prototyping platform for many different
products. Developers should realize that the firmware library subroutines are specific to the display which
is provided with the Mensch. Changing displays may also require custom support software.

Note: The W65C22 chip is mapped to address range: $00:DF00 through $00:DF1F. The least significant
four address bits select internal registers: A0=RS0, A1=RS1, A2=RS2, and A3=RS3.

 24

Keyboard

A low-profile keyboard is provided with the Mensch. The keyboard features a full ASCII keyboard, cursor
control keys, and twelve function keys. There is a W65C134 micro-controller in the keyboard unit. It
scans the keyboard and communicates serially with the CPU module of the Mensch Computer.

Figure 10
Mensch Computer

Keyboard

Connecting the Keyboard

The keyboard end of the cable is permanently wired to the keyboard. The detachable end uses
modular/CMOS and connects to the CPU module through the keyboard (marked: “KYBD”) serial port
connector. This corresponds to serial port #0 on the W65C265 micro-controller.

Keyboard Connector

Figure 11
Mensch Computer CPU Module

Rear Panel: Keyboard Connector

The keyboard provided with the Mensch is specific to this product. Even though the keyboard does attach
to a serial port of the CPU module, this is not a PC-compatible keyboard. Attempting to use a non-Mensch
keyboard may cause damage to the unit or to the Mensch.

 25

Programming Support

The Firmware provides several library subroutines for programmers to use when accessing the Mensch
keyboard.

Keyboard Support Subroutines

 _RETRIEVE_KEYBOARD_STATUS

 _CONTROL_KEYBOARD_PORT

 _GET_KEYBOARD_CHARACTER

 _SEND_BYTE_TO_KEYBOARD

 _SELECT_COMMON_BAUD_RATE

This basic set may be used as building block functions. Programmers may use them to develop more
sophisticated libraries of their own. (Refer to: Appendix B – Firmware Subroutine Library for more
information on using these subroutines.)

Those library subroutines which support generalized input/output streams can communicate with the
keyboard. Refer to the description of CONTROL_INPUT for specific details.

Keyboard Alternatives

Developers may choose the Mensch as a prototyping platform for product applications which do not require
a full ASCII keyboard. These configurations may choose to use serial port #0 for other purposes. The
default configuration for the keyboard serial port is: 9600 baud, 8 data bits, no parity, and 1 stop bit. (Refer
to: Serial Port Programming Considerations for more information.)

WARNING!
Developers should note that while the W65C265 micro-
controller has four serial ports, it allows only two baud
rate generators. In the Mensch Computer configuration,
the Modem port has an independent user-selectable baud
rate. The other three serial ports, including the
keyboard, are driven by a common oscillator. Changing
this source will affect all three ports.

 26

Printer

The Mensch’s serial printer port and associated firmware have been tested with several EPSON-compatible
printers. A special adaptor cable is available for connecting the serial printer to the Mensch CPU module.
Refer to the documentation associated with the specific printer for details on usage.

Connecting the Printer module

The printer port on the CPU module (marked: “PTR”) corresponds to serial port #1 on the W65C265
micro-controller.

Figure 12
Mensch Computer CPU Module
Rear Panel: Printer Connector

All serial ports on the Mensch CPU module use 6-pin modular connectors. These provide only CMOS
logic levels, but can be adapted to virtually any standard serial interface (i.e. 20mA, 60mA, RS-232, RS-
422, RS-423, RS-485, ect.). Most popular printers have an RS-232 (DTE) interface when used as a serial
device. The special adaptor cable converts logic levels on the modular connector to appropriate RS-232
signals on a DB-25 male connector. This can attach to the DB-25 female connector on the printer’s serial
interface.

Figure 13
Printer Cabling

The printer cable internally converts CMOS signal levels from the CPU module to the RS-232 signal levels
on the printer. This serial printer interface cable is available from WDC, but may require an adaptor. The
printer interface cable is connected to the CPU module via the printer (marked: “PTR”) serial port. (Refer
to: Mensch Schematics for more detailed information.)

Connecting Other Printers

Other serial printers may be used with the Mensch. The default configuration for the printer port is: 9600
baud, 8 data bits, no parity, and 1 stop bit.

 27

Programming Support

The Firmware provides several library subroutines for programmers to use when accessing the serial
printer. 8

This basic set may be used as building block functions. Programmers may use them to develop more
sophisticated libraries of their own. (Refer to: Appendix B – Firmware Subroutine Library for more
information on using these subroutines.)

Those library subroutines which support generalized input/output streams may be configured to
communicate with the printer port. Refer to the descriptions of the : CONTROL_INPUT and
CONTROL_OUTPUT subroutines for specific details.

Printer Support Subroutines

 _PtLn
 _CONTROL_PRINTER_PORT (ON/OFF)
 _PtCode
 _GET_PRINTER_BYTE (from printer port)
 _SetText*
 _PRINT_BYTE (Send via printer port)
 _SetGraph *
 _RETRIEVE_PRINTER_PORT_STATUS
 _SetGraph Text*
 SELECT_COMMON_BAUD_RATE
 _PtScreen*

* NOTE: These subroutines are used to support the print screen function which automatically
 copies the LCD memories to the printer port.

Alternative I/O Usage

Developers may choose the Mensch as a prototyping platform for product applications which do not require
a serial printer. These configurations may choose to use serial port #1 for other purposes. (Refer to: Serial
Port Programming Considerations for more information.)

WARNING!
Developers should note that while the W65C265 micro-
controller has four serial ports, it allows only two baud
rate generators. In the Mensch Computer configuration,
the Modem port has an independent user-selectable baud
rate. The other three serial ports, including the printer, are
driven by a common oscillator. Changing this source will
affect all three ports.

Another alternate usage involves eliminating serial port #1 entirely and reconfiguring the pin #6 on the
W65C265S to use the pulse-width measurement (PWM) feature. That is beyond the scope of this manual.
Developers should refer to: W65C265S INFORMATION, SPECIFICATION, AND DATA SHEET
from WDC for specific details. The important point to note, is that using the W65C265S in the Mensch
Computer configuration does not exclude this option.

8 Most of these printer support subroutines rely on the X-On/X-Off Protocol when communicating

with the printer. This prevents accidentally overflowing the printer’s input buffer. Users should
be sure that their printer also has been configured for the X-On/X-Off operation.

 28

Modem

Several 2400 baud modems have been tested for use with the Mensch. Any external Hayes-compatible
modem which can operate as fast as 2400 baud on an ordinary telephone line should be acceptable. 9 The
default configuration for the modem port is: 2400 baud, 8 data bits, no parity, and 1 stop bit. Charging the
configuration for the modem port does not affect the other serial ports. (Refer to specific modem
documentation for details.)

Connecting Modems

The modem port on the CPU module corresponds to serial port #2 on the W65C265 micro-controller. All
serial ports on the Mensch CPU module use 6-pin modular connectors. These provide only CMOS logic
levels, but can be adapted to virtually any standard serial interface.

Figure 14
Mensch Computer CPU Module
Rear Panel: Modem Connector

Most external modems have an RS-232 (DCE) interface. The Mensch special adaptor cable converts +5
volt logic levels on the modular connector to appropriate RS-232 signals on a DB-25 male connector. This
can attach to the DB-25 female connector on modem’s serial interface.

Figure 15
Modem Cabling

The modem cable internally converts CMOS signal levels from the CPU module to the RS-232 signal
levels on the modem. This serial modem interface cable is available from WDC, but may require an
adaptor. The modem interface cable is connected to the CPU module via the modem (marked: “MODEM”)
serial port. (Refer to: Mensch Schematics for more detailed information.)

9 This aspect: true Hayes compatibility is very important. All modems are not necessarily

compatible with the Hayes standard command set. Some are partially compatible, supporting only
a subset of the commands.

 29

Programming Support

The Firmware provides several library subroutines for programmers to use when accessing the modem.

 Modem Support Subroutines

 _CONTROL_MODEM_PORT
 GET_MODEM_RESPONSE
 _GET_MODEM_BYTE
 MODEM_ANSWER
 _RETRIEVE_MODEM_PORT_STATUS
 MODEM_DIAL
 _SELECT_MODEM_BAUD_RATE
 MODEM_HANG_UP
 _SEND_A_MODEM_BYTE
 MODEM_REDIAL
 _SEND_MODEM_STRING

This basic set may be used as building block functions. Programmers may use them to develop more
sophisticated libraries of their own. (Refer to: Appendix B – Firmware Subroutine Library for more
information on using these subroutines.)

Those library subroutines which support generalized input/output streams may be configured to
communicate with the modem port. Refer to the description of the: CONTROL_INPUT and
CONTROL_OUTPUT subroutines for specific details.

WARNING!
Developers should note that while the W65C265 micro-
controller has four serial ports, it allows only two baud rate
generators. In the Mensch Computer configuration, the
Modem port has an independent user-selectable baud rate. The
other three serial ports are driven by a common oscillator.

Alternative I/O Usage

Developers may choose the Mensch as a prototyping platform for product applications which do not require
a modem. These configurations may choose to use serial port #2 for other purposes. (Refer to: Serial Port
Programming Considerations for more information.)

 30

PC Link

Information may be transferred between computers via physical media or through data communications.
The most common methods of data transfer between systems involve serial links. One serial port on the
Mensch has been reserved for this purpose. It has been labeled: “PC” because IBM PC-compatibles
comprise the bulk of the personal computers in use.

 PC Link Connector

Figure 16
Mensch Computer CPU Module
Rear Panel: PC Link Connector

All serial ports on the Mensch CPU module use 6-pin modular connectors. These provide only CMOS
logic levels, but can be adapted to virtually any standard serial interface. (Refer to: Mensch Schematics
for more detailed information.)

Connecting the Mensch Computer to a PC

The PC port on the CPU module corresponds to serial port #3 on the W65C265 micro-controller. Normal
serial ports on PC-compatible computers are configured as Data Terminal Devices (DTE) for RS-232
usage.

There are two special adaptor cables which may be used. One converts logic levels on the modular
connector to appropriate RS-232 (DCE) signals on a DB-25 female connector. This can attach to the DB-
25 male connector on a PC’s XT-style serial interface. The other converts logic levels on the modular
connector to appropriate RS-232 (DCE) signals on a DB-9 female connector. This attaches to the DB-9
male connector on a PC’s AT-style serial interface.

Figure 17
PC Link Cabling

The PC Link cable internally converts CMOS signal levels from the CPU module to the RS-232 signal
levels on the IBM-compatible’s serial port. This serial interface cable is available from WDC, but may
require an adaptor. (See Figure 12)

The Mensch is shipped with the MenschWorks software which includes PC link support. Terminal
emulation software is needed in the PC. Other RS-232 (DTE) peripherals may be interfaced using the PC
cables and appropriate software.

 31

Direct Connection To Another Mensch Computer

A special cable is needed even when two Mensch Computers are directly connected via the PC serial link.
The transmit and receive signals must be reversed. Likewise, the Data Terminal Ready (DTR) and Data
Set Ready (DSR) must also be reversed.

Connecting To Other Personal Computers

The PC link may be used to connect to other personal computers, given proper cables and support software.
Most popular computers have some terminal emulation capabilities. Depending upon the type of interface,
a special cable may be required. Basically, their serial communication ports must provide transmit data
and receive data and handshaking signals which correspond to Data Set Ready (DSR) and Data Terminal
Ready (DTR). Cables to support RS-232 communication are described in detail in Mensch Schematics.
These cables are available and may be obtained from WDC.

Programming Support

The Firmware provides several library subroutines for programmers to use when using the PC link.

PC Link Support Subroutines

 _CONTROL_PC_PORT

 _RETRIEVE_PC_PORT_STATUS

 GET_BYTE_FROM_PC

 SELECT_COMMON_BAUD_RATE

 SEND_BYTE_TO_PC

This basic set may be used as building block functions. Programmers may use them to develop more
sophisticated libraries of their own. (Refer to: Appendix B – Firmware Subroutine Library for more
information on using these subroutines.)

Those library subroutines which support generalized input/output streams may be configured to
communicate with the PC link port. Refer to descriptions of CONTROL_INPUT and
CONTROL_OUTPUT for specific details.

Alternative I/O Usage

Developers may choose the Mensch as a prototyping platform for product applications which do not require
interconnection to a personal computer. These configurations may choose to use serial port #3 for other
purposes. (Refer to: Serial Port Programming Considerations for more information.)

Warning!
Developers should mote that while the W65C265 micro-
controller has four serial ports, it allows only two baud rate
generators. In the Mensch computer configuration, the Modem
port has an independent user-selectable baud rate. The other
three serial ports, including the PC link, are driven by a common
oscillator. Changing this source will affect all three ports.

 32

Controller

The SEGATM 6-button Arcade Pad game controller has been tested and can be used with the Mensch
Computer. When the MenschWorks software accepts controller input, it assumes total compatibility with
the SEGATM 6-button Arcade Pad.

Figure 18
SEGA Game Controller

Connecting the SEGA Game Controller

It is connected through the game controller port on the rear panel of the Mensch Computer.

 Controller Connector

Figure 19
Mensch Computer CPU Module

Rear Panel: Controller Connector

The controller port has been mapped as $00:DFE0 in the address space of the Mensch Computer
configuration.

Connecting Other Game Controllers

Several game controller products are marked as SEGATM compatible. Usually, this just means that they
plug into the same 9-pin connector as the SEGATM 6-button Arcade Pad. Some of these products, such as
the TM ProPad have many additional switches or significantly different configurations. If such a
controller is attached to the Mensch, the signals on the 9-pin connector can be read. Developers must
provide their own software for interpretation.

 33

Programming Support

The Firmware provides some library subroutines for
programmers to use when accessing the controller.

This basic set may be used as building block functions.
Programmers may use them to develop more
sophisticated libraries of their own. (Refer to: Appendix
B – Firmware Subroutine Library for more
information on using these subroutines.)

Interpreting Controller Status Codes

There are only nine pins available on the game controller connector. One is used to supply the unit with +5
volts, and another is ground. This leaves only seven pins for everything else.

Pin # Signal Name Port Pin Identifier
1 (See Text.) PB0
2 (See Text.) PB1
3 (See Text.) PB2
4 (See Text.) PB3
5 +5 Volts
6 (See Text.) PB4
7 (See Text.) PB5
8 Ground
9 (See Text.) PB6

The most significant bit of the port (PB7) is used as an output to switch the supply voltage to the controller
connector.

Figure 20
SEGA Game Controller

Switch encoding may be interpreted from the following table:

PB6 PB5 PB4 PB3 PB2 PB1 PB0 Notes
Start 0 A - - Down Up

C 1 B Right Left Down Up

Controller Support Subroutines

 _CONTROL_CONTROLLER_PORT

 _GET_CONTROLLER_DATA

 _RETRIEVE_CONTROLLER_STATUS

Start Button

Directional Pad

Button X Button Y

Button C

Button B
Button A

Button Z

Mode
Button

 34

Alternative I/O Usage

Developers may choose the Mensch as a prototyping platform for product applications which do not require
a game controller. These configurations may choose to use this port for other purposes. It should be noted
that only seven of the eight bits are normally user definable. The MSB will still control the +5 volt supply
to the connector. There is a jumper (JMP4) which may be used to change this feature and allow the user to
define the entire 8-bit port.

Power Subsystem

The Mensch has been designed to operate either from an external power source, or an internal rechargeable
battery pack. If both are available and connected at the same time, the battery pack will be recharged from
the external supply.

There are indicators on the front panel of the Mensch which show that the external power is available, and
also when the batteries are charging.

External Charger/Power Module

Each Mensch is shipped with an external charger module. This UL-approved power adaptor plugs into a
standard AC outlet and provides power to the Mensch. It attaches to the rear panel via the “CHARGER”
jack.

When the charger/power module is attached and providing power, the lower green LED, labeled:
“POWER”, will glow. The top red LED, labeled: “CHARGING”, will glow when the batteries are
charging.

 Charger Connector
 Figure 21

 Mensch Computer
 Charger/Power Module

 Figure 22
 Mensch Computer

Rear Panel: Charger Connector

The external charger/power module is a generic item. If necessary, the user should be able to buy another
off-the-shelf from local sources. Replacement should be easy, without having to place a special order with
WDC. The charger/power module shipped by WDC with each developer’s system provides (12 VDC @
500 mA) more power than the Mensch requires.

 35

Internal Battery Pack

A rechargeable battery pack is installed and connected inside of the Mensch CPU module before shipment.
(See Figure 25) It should not need replacement. If the initial checkout procedure indicates that the battery
pack is not functional, refer to Appendix A, Replacing The Battery Pack for instructions.

Figure 23

Mensch Computer
Rechargeable Battery Pack

Alternate Power Configurations

The Mensch Computer provides a development platform for applications which may use the W65C265
micro-controller in quite different configurations. Programs may be developed and their logic tested even
if their final configuration does not require a keyboard or LCD display. The W65C265 is viable in circuits
wherein the supply voltage may be less than 3 volts. Developers should be aware that some elements of the
Mensch Computer may not operate at such lower voltages. (Refer to: Mensch Computer Schematics for
complete details.)

Battery
Pack

 36

Initial Checkouts

The first step in checking the Mensch involves assembling the components previously described. Only the
CPU module, keyboard and display (with appropriate special cables), and power supply are necessary for
checkout. The controller, modem and printer (with appropriate special cables), and PC are optional.

Applying Power

Power is available to the W65C265 chip and “slow” clock circuitry whenever a battery is attached to the
internal battery connector of the Mensch, or external power is applied. There is no power ON/OFF switch.
A special low-power mode feature reduces power consumption when the system is inactive. A power-ON
reset should occur whenever the battery pack is first attached, or when external power is applied without a
battery pack. A triggered reset may be initiated manually, by pressing the RESET button on the front
panel.

Figure 24
Mensch Computer

Front Panel

If everything is correctly configured and functional, the LCD display should initialize and present the
MAIN MENU.

Figure 25
MAIN MENU

If the MAIN MENU does not appear as expected, confirm that power is available, and press the RESET
button to force the reset initialization sequence to execute.

03-02-95 MENSCH COMPUTER 12:34:56
MAIN MENU

> 1) SETUP MENU
 2) DEBUG ROUTINES
 3) TEST MENU
 4) PCMCIA CARD MENU
 5) GOTO PROGRAM
 6) LOADs & DUMPs
 7) ROM MONITOR
 8) RUN PCMCIA SHELL

USE CURSOR UP/DOWN & ENTER TO SELECT

 37

System Status Bar

The system status bar is the top line of the LCD display. It will show the current system date and time, and
the Mensch Computer title. The current battery status will appear only if the battery needs to be recharged.
(See Figure 14)

The time field will appear as eight characters on the right end of the system status bar. Time will be
displayed in the following format: “hh:mm:ss”, wherein: “hh” represents hours on a twenty-four hour
clock; “mm” represents minutes; and “ss” represents seconds. (00:00:00 = midnight / 12:00:00 = noon) If
the system is operating properly, the time field should update every second.

The date field will appear as eight characters on the left end of the system status bar. The date will be
displayed in the following format: “mm/dd/yy” wherein: ‘mm’ represents the month number; ‘dd’
represents the day of the month; and “yy” represents the least significant two digits of the year.

The title: “Mensch Computer” will appear in the middle of the system status bar.

The battery status field will appear in the middle of the system status bar, overwriting part of the title,
whenever the batteries need charging. If the system is operational, the title should normally read:
“MENSCH COMPUTER”.

Figure 26
System Status Bar

Battery Condition: Normal (Charged)

05/10/94 MENSCH COMPUTER 12:34:56

 38

The “BATTERY LOW” indication in the middle of the status bar means that the batteries are in need of
recharging.

Figure 27
System Status Bar

Battery Condition: LOW (Needs Charging)

Continued operation is not recommended when the batteries are weak. The external charger/power module
should be attached and the battery pack should be recharged. If this problem persists, then the battery pack
will need to be replaced. Refer to Appendix A – Replacing The Battery Pack for further instructions.

05/10/94 **BATTERY LOW** 12:34:56

 39

Mensch Operating System

The Mensch Operating System performs all necessary system initialization and background support
operations. It also provides a menuing system wherein the user may access utilities and application
programs.

Initially, a suite of related applications: MenschWorks will be available on an IC card for use with the
Mensch Operating System. Its features include a text editor, and a filer.

System Management

The Mensch Operating System resides in EPROM and was designed to support the specific configuration
of the Mensch Computer. It uses certain features of the more generic internal Mensch ROM Monitor of the
W65C265S chip. The operating system also provides for interaction via the modem, and support for
interaction across the PC Link interface.

Reset

Reset may be either a triggered reset or a power-on reset. There is no simple way for the firmware to
differentiate which reset occurred. However, some semaphores in memory tell the monitor that certain
aspects of the system have already been initialized. These should not be changed by the reset initialization
sequence.

There is a checksum associated with the time-of-day clock and baud rate. If the checksum is correct, then
the time-of-day clock has been running. If this is the case, the clock value will not be re-initialized.

Initialization Sequence

The following sequence is performed when power-up (or triggered RESET) occurs, to get the Mensch
Computer into a normal operating mode. This description is intended as an overview only; not a specific,
line by line analysis of the program code.

INITIAL CONDITION

POWER OFF or any previous powered state,
including LOW-POWER MODE.

RESET OCCURS!
(This may be POWER ON or triggered RESET.)

STAGE #1 (Performed by Mensch Monitor)

“Essential initialization”
 - Disable interrupts
 - Reset stack
 - Clear decimal mode

“Enable External Memory”

Check location $00:8000 - $00:8002 for the string ‘WDC’.
 If the string is there;

 Transfer control to Firmware program in
 EPROM memory. (JMP $00:8004)

 Else
 This alternate path is not applicable to this
 discussion of the Firmware.

(Refer to: the Mensch Monitor ROM, Reference Manual for more
details.)

 40

STAGE #2 (Performed by the EPROM Mensch Operating System.)

“Miscellaneous initialization”

 -Start the fast clock, delay while it becomes stable, and then
 switch to fast clock.

 - Initialize the RAM interrupts vectors.
 - Setup the 1 second time-of-day clock interrupt.
 - Setup serial I/O buffers & pointers in RAM.

Check the Time-of-Day clock checksum.
 If the clock checksum has been corrupted;

 - Reset the Time-of-Day clock.

 - Reset the baud rate counters for the serial ports to
 their default values.

 - Set up the control ports of the serial UARTs.

Enable interrupts

Construct the initial MAIN MENU display.

Wait for operator input, build secondary
menus, and perform requested operations.

STAGE #3 (Performed by application software.)

Configure I/O as desired for application software.

Time-Of-Day Clock/Calendar

The Mensch Computer includes a time-of-day clock feature which operates even when the system is in
low-power mode. The date and time are typically displayed, and updated in the top corners of the LCD
screen. The time-of-day clock may also be set and read by application programs.

Alarm Function

A built-in alarm function uses the time-of-day clock. The user may set or check the alarm from the
keyboard via utility programs, or within software applications via library subroutines. When the alarm
times out, the firmware will beep the speaker until the space bar on the keyboard is pressed.

 41

Programming Support

The Firmware provides library subroutines for programmers to use when accessing the time-of-day
clock/calendar and alarm features.

Clock/Calendar/Alarm
Support Subroutines

 READ_DATE

 SET_DATE

 READ_TIME

 SET_TIME

 SET_ALARM

 RESET_ALARM

 READ_ALARM

 GET_ALARM_STATUS

This basic set may be used as building block functions. Programmers may use them to develop more
sophisticated libraries of their own. Refer to: Appendix B – Firmware Subroutine Library for more
information on using these subroutines.

Power Management

 The power management functions of the Mensch fall into two categories: (1) Battery Monitoring/Status
Display and (2) Low-Power Mode Support.

Battery Monitoring

The condition of the battery pack in the Mensch is constantly monitored by the hardware. Background
functions in the Firmware regularly check and display the battery status. If the battery pack is adequately
charged, the title: “MENSCH COMPUTER” will appear normally in the middle of the Status Display Line.

If the battery condition is weak enough to jeopardize continued operation of the Mensch Computer, the
indication: “BATTERY LOW” will appear in the middle of the Status Display Line, replacing the title.
When this situation occurs, operation should be suspended until the battery pack can be recharged.

Low-Power Mode

 When the Mensch keyboard is inactive for several minutes, the system will switch over to low-power
mode. The LCD display will blank out. This action is taken to reduce power consumption and extend the
battery life. The Mensch Computer may be reactivated from low-power mode by RESET, or by pressing
any key on the keyboard.

 42

Basically, the Mensch Computer enters low-power mode by performing the following sequence:

 Shut down all interrupts (except Time-Of-Day clock.)

 Clear any pending interrupts.

 Reset the stack to ($00:)01FF.

 Enable the power down routine.

 Switch to the slow (default) clock and then shut off the fast clock.

 Configure I/O ports to inputs.

The power down routine will service the time-of-day interrupt.

The support program for low-power mode resides in the on-board RAM and ROM of the W65C265 micro-
controller. Other circuitry on the board may be shut down, but power should not be removed from the
W65C265 chip itself. These background operations in the Firmware maintain the time-of-day clock. The
support software for this resides in the masked ROM of the W65C265 chip. It can continue to operate even
in low-power mode.

If a physical reset occurs while the system is in low-power mode, the normal reset initialization sequence
will be performed.

Voltage Detection Circuitry

The Mensch hardware includes a voltage detection circuit which may be monitored by software.
Application software may check to determine whether the system is operating off power from batteries or
the external charger/power module. If the system is using batteries alone, the condition of the batteries may
be monitored to avoid problems.

Programming Support

The Firmware provides a library subroutine for programmers to use when checking the voltage detection
status: CHECK_VOLTAGE.

Another library subroutine allows the user software to place the system in low-power mode. It is:
ENGAGE_LOW_POWER_MODE.

Custom applications may only use some of the features and elements of the Mensch. These programs may
selectively manipulate power switching controls over subsystems. Several Firmware library subroutines
have been provided for this purpose.

Power Management Support Subroutines

 CONTROL_CONTROLLER_PORT

 CONTROL_DISPLAY

 CONTROL_KEYBOARD_PORT

 CONTROL_MODEM_PORT

 CONTROL_PC_PORT

 CONTROL_PRINTER_PORT

 CONTROL_SPEAKER_AMP

 43

Programmers may use these and other library subroutines to develop more sophisticated libraries of their
own. Refer to: Appendix B – Firmware Subroutine Library for more information.

Menuing Support

The Firmware program of the Mensch is intended to be User Friendly. Whenever possible, the mode
changing commands require only a single keypress. Some modes may display a menu of additional
options. The user may target a specific menu item using the up-arrow () and down- arrow () keys, or
the controller left button. Any response will not be final until the ENTER key has been pressed. If the
user chooses to cancel a response, this may be accomplished by pressing the ESC (Escape) key, before
pressing ENTER.

Programming Support

The Firmware provides a library subroutine for programmers to use when developing their own menus for
the LCD screen.

 Menuing Support Subroutines

 MENU_SETUP

 MENU_POINT

 DISP_LCD_HEADER

 TIME_DATE_CHK

 CHECK_YN

 GET_HILO

 GET_BIN_NUM

Programmers may use these and other library subroutines to develop more sophisticated libraries of their
own. Refer to: Appendix B – Firmware Subroutine Library for more information.

 44

Main Menu

The MAIN MENU display will appear upon system reset. This menu offers access to a variety of setup,
test, and utility functions.

Figure 28
MAIN MENU

The MAIN MENU also allows the user to execute the PCMCIA Shell program, the MenschWorks
application example, or user-supplied application programs on IC cards.

Figure 29
MAIN MENU Tree

03-02-95 MENSCH COMPUTER 12:34:56
 MAIN MENU

> 1) SETUP MENU
 2) DEBUG ROUTINES
 3) TEST MENU
 4) PCMCIA CARD MENU
 5) GOTO PROGRAM
 6) LOADs & DUMPs
 7) ROM MONITOR
 8) RUN PCMCIA SHELL

USE CURSOR UP/DOWN & ENTER TO SELECT

Main Mensch Menu

Setup Menu Test Menu Goto Program ROM Monitor

Loads &
Dumps Menu

Run PCMCIA Shell DEBUG
ROUTINES

Menu

PCMCIA Card
Menu

1 3 42 5 6 7 8

 45

1) SETUP MENU ()

The SETUP MENU is used to configure some of the key components of the Mensch.

Figure 30
SETUP MENU

This is the menu to select when the system date and time need to be reset. It also provides a means of
setting or disabling the system alarm function.

Figure 31
SETUP MENU Tree

In addition, there are two items by which the user may view the current setup options on a Hayes-
compatible modem, or send it a predefined initialization sequence.

Setup
Menu

Display &
Set Time

Display &
Set Alarm

(Reserved) View Modem
Setup

Initialize
Modem

Return To
Main Menu

Display &
Set Date

(Reserved)

1 3 42 5 6 7 8

06-18-94 MENSCH COMPUTER 12:34:56
 SETUP MENU

> 1) DISPLAY & SET TIME
 2) DISPLAY & SET DATE
 3) DISPLAY & SET ALARM
 4) Reserved
 5) Reserved
 6) INITALIZE MODEM
 7) VIEW MODEM SETUP
 8) RETURN TO MAIN MENU

USE CURSOR UP/DOWN & ENTER TO SELECT

 46

1) DISPLAY & SET TIME ()

This SETUP MENU item allows the user to enter a new time value for the system time-of-day
clock/calendar feature of the Mensch.

Figure 32
DISPLAY & SET TIME

The time entry format (HH:MM:SS) is shown above, wherein: HH = hours

 MM = Minutes

 SS = Seconds

2) DISPLAY & SET DATE ()

This SETUP MENU item allows the user to enter a new date value for the system time-of-day
clock/calendar feature of the Mensch Computer.

Figure 33
DISPLAY & SET DATE

The date entry format (MM-DD-YY) is shown above, wherein: MM = Month

 DD = Day of Month

 YY = Year (1994 = 94)

11-14-94 MENSCH COMPUTER 12:34:56
 SETUP MENU

> 1) DISPLAY & SET TIME
 2) DISPLAY & SET DATE
 3) DISPLAY & SET ALARM
 4) Reserved
 5) Reserved
 6) INITALIZE MODEM
 7) VIEW MODEM SETUP
 8) RETURN TO MAIN MENU

USE CURSOR UP/DOWN & ENTER TO SELECT
 Time is 12:34:56
Time Format = HH:MM:SS

03-02-95 MENSCH COMPUTER 12:34:56
 SETUP MENU

 1) DISPLAY & SET TIME
> 2) DISPLAY & SET DATE
 3) DISPLAY & SET ALARM
 4) Reserved
 5) Reserved
 6) INITALIZE MODEM
 7) VIEW MODEM SETUP
 8) RETURN TO MAIN MENU

USE CURSOR UP/DOWN & ENTER TO SELECT
 Date is 03-02-95
Date Format = MM-DD-YY

 47

3) DISPLAY & SET ALARM ()

This SETUP MENU item allows the user to disable or set the built-in alarm feature of the Mensch
Computer.

Figure 34
DISPLAY & SET ALARM

If the alarm function is not active when this item is selected, then the prompt: “Turn Alarm On Y/N” will
appear. A response of: ‘N’ (“NO”) will cancel this operation and return to the SETUP MENU normal
display. If the user responds: ‘Y’ (“YES”), then another prompt will appear:

Figure 35
Alarm Entry Prompt

The alarm entry format (HH:MM:SS) is shown above, wherein: HH = Hours
 MM = Minutes
 SS = Seconds

When the alarm conditions are satisfied, the firmware will begin beeping the speaker. The alarm sound
may be terminated by pressing the space bar on the keyboard.

03-02-95 MENSCH COMPUTER 12:34:56
 SETUP MENU

 1) DISPLAY & SET TIME
 2) DISPLAY & SET DATE
> 3) DISPLAY & SET ALARM
 4) Reserved
 5) Reserved
 6) INITALIZE MODEM
 7) VIEW MODEM SETUP
 8) RETURN TO MAIN MENU

Alarms is OFF / DOWN & ENTER TO SELECT
Turn Alarm On Y/N?

06-18-94 MENSCH COMPUTER 12:34:56
 SETUP MENU

 1) DISPLAY & SET TIME
 2) DISPLAY & SET DATE
> 3) DISPLAY & SET ALARM
 4) Reserved
 5) Reserved
 6) INITALIZE MODEM
 7) VIEW MODEM SETUP
 8) RETURN TO MAIN MENU

Alarms is OFF / DOWN & ENTER TO SELECT
Turn Alarm On Y/N?
Alarm Format = HH:MM:SS

 48

4) Reserved and
5) Reserved ()

These options are not yet assigned. They have been reserved for future use. When either of these menu
items is selected, the following screen will appear:

Figure 36
SETUP MENU Options: #4 & #5

6) INITIALIZE MODEM ()

This SETUP MENU item allows the user to initialize the modem. The following screen appears when this
item is selected:

Figure 37
INITIALIZE MODEM

1st Screen Blinks Quickly

06-18-94 MENSCH COMPUTER 12:34:56

Function not available !

06-18-94 MENSCH COMPUTER 12:34:56

 49

It will only appear for a moment, to be replaced by another:

Figure 38
INITIALIZE MODEM

2nd Screen (Approx. 5 sec.)

This screen will remain while the modem initialization commands are being sent. Under normal
conditions, this should only last about five seconds.

After about five seconds, the modem ID, read from the modem, will appear:

Figure 39
INITIALIZE MODEM
3rd Screen w/Modem ID

This third screen showing the modem ID will remain until two keys are pressed. Control will be returned
to the SETUP MENU.

OK

242

OK

 50

If this option is selected, but no modem is attached, then the following screen will be displayed:

Figure 40
INITIALIZE MODEM

Pressing ESC (Escape) twice will return control to the SETUP MENU.

7) VIEW MODEM SETUP ()

This SETUP MENU item allows the user to view the modem setup information. It does this by reading it
back directly from the modem. The following screen will appear when this item is selected:

Figure 41
VIEW MODEM SETUP

1st Screen
Pressing any key will display the second page of modem setup information.

ACTIVE PROFILE:
 B1 E0 L2 M1 Q0 V1 X4 Y0 &C1 &D2 &G0 &J0
&L0 &P0 &Q0 &R0 &S0 &X0 &Y0
S00:002 S01:000 S02:043 S03:013 S04:010
S05:008 S06:002 S07:030
S08:002 S09:006 S10:014 S12:050 S14:00H
S16:00H S8:000 S21:30H
S22:76H S23:17H S25:005 S26:001 S27:40H

STORED PROFILE 0:
B1 E0 L2 M1 Q0 V1 X4 Y0 &C1 &D2 &G0 &J0
&L0 &P0 &Q0 &R0 &S0 &X0
S00:002 S14:88H S18:000 S21:30H S22:76H
 ----- MORE -----

 51

Figure 42
VIEW MODEM SETUP

2nd Screen

If the modem setup information fills or exceeds two screens, additional screens will be available. This is
indicated by: “--MORE--“on the bottom of the display. Pressing any key will cause the next screen to
appear.

The modem setup information will usually be terminated by: “OK” which indicates that the modem is
ready for another command.

Figure 43
VIEW MODEM SETUP

3rd Screen

The final screen will remain for about three seconds and then return control to the SETUP MENU.

8) RETURN TO MAIN MENU ()

Pressing ESC (Escape) or selecting this option returns control to the MAIN MENU.

S23:17H S25:005 S26:001
S27:40H

STORED PROFILE 1:
B1 E1 LZ M1 Q0 V1 X4 Y0 &C1 &D2 &G0 &J0
&L0 &P0 &Q0 &R0 &X0
S00:000 S14:AAH S18:000 S21:30H S22:76H
S23:17H S25:005 S26:001
S27:40H

TELEPHONE NUMBERS:
&Z0=
&Z1=
&Z2=
&Z3=
----- MORE -----

OK

 52

2) DEBUG MENU ()

This menu provides a list of options to allow users to directly manipulate the environment in which
programs execute. These options include dumping and/or modifying memory, setting breakpoints to
interrupt execution, and displaying the register contents of application programs. When used with other
features such as loading programs, or executing from an address, or even accessing the Mensch ROM
Monitor, the debug functions are powerful tools.

Figure 44
DEBUG MENU

The ESC (Escape) key may be used to cancel these menu operations and return to the MAIN MENU.

 Figure 45
DEBUG MENU Tree

06-18-94 MENSCH COMPUTER 12:34:56
 DEBUG MENU

> 1) Alter Memory
 2) Display Registers
 3) SET Breakpoint
 4) FILL Memory
 5) DUMP to Screen
 6) ASCII Screen Dump
 7) Reserved
 8) RETURN TO MAIN MENU

USE CURCOR UP / DOWN & ENTER TO SELECT

DEBUG
Menu

Alter
Memory

SET
Breakpoint

DUMP
Screen

Reserved

ASCII
Screen Dump

Return To
Main Menu

Display
Registers

FILL
Memory

1 3 42 5 6 7 8

 53

1) ALTER MEMORY ()

This DEBUG MENU item allows the user to change the contents of RAM locations. First, a prompt will
appear requesting the first address to be modified. Any valid address may be entered, but only RAM
locations can be changed.

Figure 46
Alter Memory Prompt

When a valid address response has been entered, then the currents of sixteen locations, beginning at the
specified address, will be displayed. The cursor will be positioned below the first location, and the user
may begin entering new data into consecutive locations.

Figure 47
Alter Memory Display

The cursor will advance by spacing over the next field as each value is typed. Backspacing is supported,
however only the ENTER key will exit and return control to the DEBUG MENU. The ESC (Escape) key
may behave unpredictably, and should not be used.

Enter Address BB:AAAA

Address 4 5 6 7 8 9 A B
00:1234 26 85 20 0C 00 00 01 40
00:123C 41 42 35 20 44 46 20 42
00:1234

 54

2) DISPLAY REGISTERS ()

This DEBUG MENU item allows the user to view the working registers available to application programs.
When an executing application encounters a breakpoint, a BRK instruction, it returns control to the
operating system. First, it will copy the contents of all registers into some pseudo-registers in RAM. These
working registers will be used to restore the real registers when an application program is started. It is
these RAM locations which are viewed by this menu selection.

Figure 48
Display Registers

When debugging an application the user may set a breakpoint at a key position in the program, and then
examine the register contents when that breakpoint is encountered. Breakpoints may be set from option #3
of the DEBUG MENU.

Any key may be pressed to return to the DEBUG MENU, after the registers have been displayed.

3) SET BREAKPOINT ()

This DEBUG MENU item allows the user to set a breakpoint at a specific location. Basically, this involves
storing a BRK instruction ($0000) at the target location.

Figure 49
Set Breakpoint

When execution resumes, the program may attempt to execute the target instruction. The BRK instruction
will be executed instead. Control will be returned to the Mensch Operating System.

The ESC (Escape) key may be used to cancel this operation and return to the DEBUG MENU, instead of
entering an address at the prompt.

PCntr Acc Xreg Yreg Stack
34:0001 00 01 0A 34 00 01 0A 34
 DirRg F DBK
 00 01 DF 34

Status Reg
M V M X D I Z C
1 1 0 1 1 1 1 1

Enter Address BB:AAAA

 55

4) FILL MEMORY ()

This DEBUG MENU item allows the user to fill a block of memory with a constant value.

Figure 50
FILL Memory: First Prompt

When this option is selected, it will display the above prompt for the lowest address in the memory block.
The user may cancel this operation by pressing the ESC (Escape) key, instead of entering an address.

Figure 51
FILL Memory: Second Prompt

After the user has entered a lowest address, the above prompt for highest address will appear. Again, the
user may cancel this operation by pressing the ESC (Escape) key, instead of entering an address.

Figure 52
FILL Memory: Third Prompt

Press any key to return to the SETUP MENU screen.

Enter Lowest Address BB:AAAA

Enter Lowest Address BB:AAAA 00:0000
Enter Highest Address BB:AAAA

Enter Lowest Address BB:AAAA 00:S000
Enter Highest Address BB:AAAA 00:SFFF
Enter Byte in HEX

 56

5) DUMP TO SCREEN ()

This DEBUG MENU item allows the user to examine a block of memory by dumping its contents,
appropriately formatted in hexadecimal, to the LCD screen.

Figure 53
DUMP to Screen: First Prompt

When this option is selected, it will display the above prompt for the lowest address in the memory block.
The user may cancel this operation by pressing the ESC (Escape) key, instead of entering an address.

Figure 54
DUMP to Screen: Second Prompt

After the user has entered a lowest address, the above prompt for highest address will appear. Again, the
user may cancel this operation by pressing the ESC (Escape) key, instead of entering an address.

The LCD screen will display the first ninety-six locations of the memory block. The address and eight
locations will be displayed on each line in hexadecimal format.

Enter Lowest Address BB:AAAA

Enter Lowest Address BB:AAAA 00:0000
Enter Highest Address BB:AAAA

 57

Figure 55
DUMP to Screen: Data Display

Only twelve lines may be displayed at a time. The user may press any key to display successive screens of
data, until reaching the end of the selected memory block. After the last location of the memory block has
been displayed, any keypress will return to the DEBUG MENU.

6) ASCII Screen Dump ()

This DEBUG MENU item allows the user to examine a block of memory by dumping its contents,
appropriately formatted in ASCII, to the LCD screen.

Figure 56
ASCII Screen Dump: First Prompt

When this option is selected, it will display the above prompt for the lowest address in the memory block.
The user may cancel this operation by pressing ESC (Escape) key, instead of entering an address.

Figure 57
ASCII Screen Dump: Second Prompt

After the user has entered a lowest address, the above prompt for highest address will appear. Again, the
user may cancel this operation by pressing the ESC (Escape) key, instead of entering an address.

1 Address 0 1 2 3 4 5 6 7
2
3 00:0000 5C D3 CE 00 5C E1 CE 00
4 00:0008 5C 00 82 00 5C 00 82 00
5 00:0010 5C 00 82 00 5C AB C2 00
6 00:0018 5C D1 ED 00 5C 00 82 00
7 00:0020 5C 21 81 00 5C 00 5C 00
8 00:0028 00 00 00 00 00 00 00 00
9 00:0030 00 00 00 00 03 00 03 00
10 00:0038 04 04 84 04 00 04 00 04
11 00:0040 03 04 81 01 00 00 00 00
12 00:0048 0D D9 00 00 48 D9 00 04
13 00:0050 DF D9 01 20 4B C6 00 04
14 00:0058 6C 02 00 05 00 A7 0F 00
15
16

Enter Lowest Address BB:AAAA

Enter Lowest Address BB:AAAA 00:0000
Enter Highest Address BB:AAAA

 58

The LCD screen will echo the characters as they are sent to the PC Link serial port. The LCD screen may
be difficult to read because the data is in S28 record format.

Figure 58
ASCII Screen Dump: Data Display

Press any key to return to the DEBUG MENU.

7) Reserved ()

This option is not yet assigned. It has been reserved for future use. When this menu item is selected, the
following screen will appear.

Figure 59
DEBUG ITEM #7

Pressing any key will return to the DEBUG MENU.

8) RETURN TO MAIN MENU ()

Pressing ESC (Escape) or selecting this option on the DEBUG MENU returns control to the MAIN
MENU.

08-18-94 MENSCH COMPUTER 12:34:56

Function not available !¦

00:000 \ * * * \ * * * \ * * * \ * * *
00:0010 \ * * * \ * * * \ * * * \ * * *
00:0020 \ . * * * * * * * * * * * * * *
00:0030 * * * * * * * * * * * * * * * *
00:0040 * * * * * * * * * * * K * * *
00:0050 * * * * K * * * 1 * * * * * * *
00:0060 * * * * * * * * * * * * * * * *
00:0070 * 7 * * * * B * K * * * K * * *
00:0080 K * * * K * * * K * * * K * * *
00:0090 K * * * K * * * K * * * K * * *
00:00A0 K * * * * * * * K * * * K * * *
00:00B0 K * * * K * * * K * * * K * * *

 59

3) TEST MENU ()

The TEST MENU is used to conduct simple checks on some of the key elements of the Mensch Computer.

Figure 60
TEST MENU

Besides testing the keyboard, audio circuitry, modem, printer, and game controller, this menu allows the
user to review what version and date are in the EPROM firmware.

Figure 61
Test Menu Tree

06-18-94 MENSCH COMPUTER 12:34:56
 TEST MENU

> 1) KEYBOARD TEST
 2) DTMF TEST
 3) MODEM TEST
 4) TEST PRINTER
 5) GAME CONTROLLER
 6) SOFTWARE VERSION
 7) GRAPHICS TEST
 8) RETURN TO MAIN MENU

USE CURSOR UP/DOWN & ENTER TO SELECT

Test
Menu

Keyboard
Test

Modem
Test

Game
Controller

Graphics
Test

Software
Version

Return To
Main Menu

DTMF
Test

Test
Printer

1 3 42 5 6 7 8

 60

1) KEYBOARD TEST ()

This TEST MENU item allows the user to check the serial keyboard path.

Figure 62
KEYBOARD TEST

When the above screen appears, the program will echo any key pressed by the user. The ESC (Escape) key
may be used to cancel this operation and return to the TEST MENU.

If a normally displayable character does not echo properly; reset the system and try again. If the problem
persists, then there may be a malfunction in the keyboard module (or alternative source), or the cabling, or
the Mensch Computer itself. Further isolation involves replacing the keyboard with a known good unit, and
retesting.

 KEYBOARD TEST _ use ESC key to exit

 61

2) DTMF TEST ()

This TEST MENU item will cause a brief burst of sound as DTMF tones are gated through the amplifier to
the speaker.

Figure 63
TEST MENU – DTMF TEST

The following screen will appear when this item is selected:

Figure 64
DTMF TEST Screen

Pressing any of the keys on the keyboard which corresponds to keys on a telephone pad will generate the
appropriate DTMF combination as an audio burst from the speaker. Acceptable keys are: 0,1, 2, 3, 4, 5, 6,
7, 8, 9, A, B, C, D, #, and *. Refer to the description of the SEND_DTMF_DIGIT subroutine for details
about which tone pairs are associated with each key. Pressing any other key will return control to the
TEST MENU.

DTMF TEST – use ESC key to exit

06-18-94 MENSCH COMPUTER 12:34:56
 TEST MENU

1) KEYBOARD TEST
2) DTMF TEST
3) MODEM TEST

> 4) TEST PRINTER
5) GAME CONTROLLER
6) SOFTWARE VERSION
7) GRAPHICS TEST
8) RETURN TO MAIN MENU

USE CURSOR UP/DOWN & ENTER TO SEELCT

 62

3) MODEM TEST ()

This TEST MENU item allows the user to interact directly with the modem. The following screen appears
when this item is selected:

Figure 65
MODEM TEST

While not exactly a test in itself, this selection may be used to command the modem to perform its own
internal diagnostics. Hayes-compatible modems typically include the following built-in tests:

Command String Description

AT&T0 End current test, if there is a test in progress.
AT&T1 Initiate local analog loopback test.
AT&T2 Not used.
AT&T3 Initiate local digit loopback test.

AT&T4 Grant remote digital loopback request from
remote mode.

AT&T5 Deny remote digital loopback request from
remote mode.

AT&T6 Initiate remote digit loopback test.
AT&T7 Initiate remote digit loopback with self-test.
AT&T8 Initiate local analog loopback with self-test.

Users should consult the documentation for their own modem to determine what other modem tests or
commands may also be used with that product.

Pressing ESC (Escape) eventually returns control to the TEST MENU. There may be a delay of several
seconds before the ESC key is recognized.

06-18-94 MENSCH COMPUTER 12:34:56
 MODEM Test

 63

4) TEST PRINTER ()

This TEST MENU item allows the user to test the printer path by sending a repeating stream of character
data to the serial printer port. If the communication link is sound, this test should effectively exercise the
printer hardware10. Serious problems in the printer itself, may manifest themselves when this test is run. If
the printer does not print as expected, then check power, cabling, and confirm that the printer is enabled.
Control will return to the TEST MENU upon successful completion of this test.

Figure 66
TEST PRINTER

If there is no printer attached to the port, then the TEST MENU screen will just blink once when this item
is selected.

10 Most late model printers have internal diagnostics. If this test does not operate correctly, then the

printer self-test should be performed.

06-18-94 MENSCH COMPUTER 12:34:56
 TEST MENU

1) KEYBOARD TEST
2) DTMF TEST
3) MODEM TEST

> 4) TEST PRINTER
5) GAME CONTROLLER
4) SOFTWARE VERSION
5) GRAPHICS TEST
6) RETURN TO MAIN MENU

USE CURSOR UP/DOWN & ENTER TO SEELCT

 64

5) GAME CONTROLLER ()

This TEST MENU item allows the user to test the game controller and its port.

Figure 67
GAME CONTROLLER

Pressing the SPACE BAR will read the controller port and display any buttons on the controller which are
currently down.

Figure 68
GAME CONTROLLER

Pressing ESC (Escape) key will return to the TEST MENU.

06-18-94 MENSCH COMPUTER 12:34:56
 TEST MENU

1) KEYBOARD TEST
2) DTMF TEST
3) MODEM TEST

 4) TEST PRINTER
> 5) GAME CONTROLLER

6) SOFTWARE VERSION
7) GRAPHICS TEST
8) RETURN TO MAIN MENU

USE CURSOR UP/DOWN & ENTER TO SEELCT

06-18-94 MENSCH COMPUTER 12:34:56

Start
A
B
C
Right
Left
Down
Up

 65

6) SOFTWARE VERSION ()

This TEST MENU item will display the current version number of the EPROM firmware and also the date
and time when it was generated.

Figure 69
SOFTWARE VERSION

Pressing any key will return to the TEST MENU.

7) GRAPHICS TEST ()

This option demonstrates the features of the LCD in text mode, graphics mode, and combined mode. It
begins by drawing several geometric patterns in graphics mode. Then a number sequence (“065535”) will
repeat in text mode until all character positions are full. Both display modes will be enabled so the
combined image will be displayed on the LCD screen.

While the combined image remains on the display, this test will selectively copy the images to the printer.
It will first print only the graphics mode memory image, then the combined image, and finally the text.

Figure 70
GRAPHICS TEST

The test will wait for any key to be pressed before returning to the TEST MENU.

8) RETURN TO MAIN MENU ()

Pressing ESC (Escape) or selecting this option in the TEST MENU returns control to the MAIN MENU.

06-18-94 MENSCH COMPUTER 12:34:56
 TEST MENU

1) KEYBOARD TEST
2) DTMF TEST
3) MODEM TEST

 4) TEST PRINTER
5) GAME CONTROLLER
6) SOFTWARE VERSION

> 7) GRAPHICS TEST
8) RETURN TO MAIN MENU

USE CURSOR UP/DOWN & ENTER TO SEELCT

MENSCH COMPUTER Version 3.01
 © Copyright 1994, 1995
Assembled Mon Feb 27 12:51:55 1995

 66

4) PCMCIA CARD MENU ()

This MAIN MENU item allows the user to display a menu of available choices from the specified IC card.
Usually, these menu items will be programs which the user may select for execution. Initially, the user will
be prompted to select which IC card directory should be displayed.

Figure 71
PCMCIA CARD MENU PROMPT

After the user has selected an IC card, the menu for that card, if one exists, will appear.

Figure 72
PCMCIA CARD MENU

The user may initiate the execution of the MENSCH WORKS application program in the above example
by pressing the ENTER key. If the menu contained several items, then the vertical arrow keys would be
used to position before selecting the program for execution.

If the card has been properly formatted, using the PCMCIA shell, but no programs is in the menu, the list
will be empty:

Figure 73
PCMCIA CARD MENU

w/No Programs

Card = HI or LO :

06-18-94 MENSCH COMPUTER 12:34:56
 PROGRAM LIST

06-18-94 MENSCH COMPUTER 12:34:56
 PROGRAM LIST

> MENSCH WORKS Applications

 67

If no menu information can be located on the specified IC card, or no card has been inserted, the following
screen will appear:

Figure 74
PCMCIA CARD MENU ERROR

The ESC (Escape) key may be used to cancel this operation and return to the MAIN MENU.

5) GOTO PROGRAM ()

This MAIN MENU item will allow the user to specify any address desired and transfer execution to it.

Figure 75
GOTO PROGRAM

Obviously, control should only be transferred to valid executable programs. Otherwise, the consequences
are unpredictable.

06-18-94 MENSCH COMPUTER 12:34:56
 PROGRAM LIST
>

 Improper or Missing Card

06-18-94 MENSCH COMPUTER 12:34:56
 MAIN MENU

1) SETUP MENU
2) DEBUG ROUTINES
3) TEST MENU

 4) PCMCIA CARD MENU
> 5) GOTO PROGRAM

6) LOADs & DUMPs
7) ROM MONITOR
8) RUN PCMCIA SHELL

USE CURSOR UP/DOWN & ENTER TO SEELCT

 68

6) LOAD & DUMP MENU ()

The LOAD & DUMP MENU is used to interact with another computer via the PC Link serial port.
Typically, this will involve transferring S28 records between systems.

Figure 76
LOAD & DUMP MENU

This menu also allows the user to examine sections of memory by dumping their contents, appropriately
formatted, to the LCD screen or printer serial port.

Figure 77
LOAD & DUMP Menu Tree

Load & Dump
Menu

Load S28
Records

Dump S28
Records

Dump To
Screen

Alter
Memory

ASCII
Screen Dump

Return To
Main Menu

(Reserved) Dump To
Printer

1 3 42 5 6 7 8

06-18-94 MENSCH COMPUTER 12:34:56
 LOAD & DUMP MENU

> 1) KEYBOARD TEST

2) DTMF TEST
3) MODEM TEST

 4) TEST PRINTER
5) GAME CONTROLLER
6) SOFTWARE VERSION
7) GRAPHICS TEST
8) RETURN TO MAIN MENU

USE CURSOR UP/DOWN & ENTER TO SEELCT

 69

1) LOAD S28 Records ()

This LOAD & DUMP MENU item allows the user to load S28 records into memory from a host computer
via the PC Link serial port.

Figure 78
LOAD S28 Records #1

When this option is selected, the Mensch is ready to accept “S28” records via the PC link. The screen will
be cleared and the cursor will move down several lines.

Figure 79
LOAD S28 Records #2

The LCD screen will remain in this state until records are received from the PC link. The user may cancel
this operation at any time by pressing the ESC (Escape) key.

A 4-digit counter will appear on the screen and increment as each record is received. If more than ten
thousand records are processed, the counter will wrap around and start at zero again. This loader performs
only minimal validation of received records. It does detect checksum errors in properly formatted “S28”
records. If a checksum error is detected, the loader will echo a ‘?’ (Question Mark) to the display.

Figure 80
LOAD S28 Records #3

06-18-94 MENSCH COMPUTER 12:34:56
 LOAD & DUMP MENU

> 1) LOAD S28 Records

2) Reserved
3) DUMP S28 Records

 4) DUMP to PRINTER
5) DUMP to Screen
6) ASCII Screen Dump
7) ALETER MEMORY
8) RETURN TO MAIN MENU

USE CURSOR UP/DOWN & ENTER TO SEELCT

7. 00017.

 70

The load operation terminates when the final record, usually “S804000000FB”, is processed, or an ‘ESC’
(Escape) character is detected from any enabled input stream. The loader will display a final status
message near the bottom of the screen.

Figure 81
LOAD S28 Records #4

Any keypress may be used to acknowledge the status message and return control to the LOAD & DUMP
MENU screen.

2) Reserved ()

This function is not yet assigned. It has been reserved for future use. When this menu items is selected, the
following screen will appear:

Figure 82
LOAD & DUMP MENU Option #2

Press any key to return to the LOAD & DUMP MENU screen.

. 0666.
Load is completed OK

06-18-94 MENSCH COMPUTER 12:34:56

Function not available !

 71

3) DUMP S28 Records ()

This LOAD & DUMP MENU item allows the user to send a block of memory to a host computer, via the
PC Link serial port, as S28 records.

Figure 83
DUMP S28 Records First Prompt

When this option is selected, it will display the above prompt for the lowest address in the memory block.
The user may cancel this operation by pressing the ESC (Escape) key, instead of entering an address.

Figure 84
DUMP S28 Records Second Prompt

After the user has entered a lowest address, the above prompt for highest address will appear. Again, the
user may cancel this operation by pressing the ESC (Escape) key, instead of entering an address.

Enter Lowest Address BB:AAAA

Enter Lowest Address BB:AAAA 00:0000
Enter Highest Address BB:AAAA

 72

The LCD screen will echo the characters as they are sent to the PC Link serial port. The LCD screen may
be difficult to read because the data is in S28 record format.

Figure 85
DUMP S28 Records - Brief

Figure 86
DUMP S28 Records – Long

Press any key to return to the LOAD & DUMP MENU.

S2140000005C5BC5005C69C5005C0002005C0002
0029
S2140000105C0082005C7287005C43EZ005C0002
0019
SZ140000205CZ604003600360000000000000000
0059
S214000030000000000300030043039503990390
039B
SZ14000040530302030004000466000000028004
2A82

S2140000005C5BC5005C69C5005C0002005C0002
0029
S2140000105C0082005C7287005C43EZ005C0002
0019
SZ140000205CZ604003600360000000000000000
0059
S214000030000000000300030043039503990390
039B
SZ14000040530302030004000466000000028004
2A82
SZ14000050DF89CF46B7BC002A6C02000500AF00
005F
S214000060600000000000FF0000D30230C81700
0444
S214000070020000F0460000000209442A020044
ZA5ASZ140000000Z0044ZA0200442A0200441A0

 73

4) DUMP to PRINTER ()

This LOAD & DUMP MENU item allows the user to examine a block of memory by dumping its contents,
appropriately formatted, to the printer port.

Figure 87
DUMP to PRINTER First Prompt

When this option is selected, it will display the above prompt for the lowest address in the memory block.
The user may cancel this operation by pressing the ESC (Escape) key, instead of entering an address.

Figure 88
DUMP to PRINTER Second Prompt

After the user has entered a lowest address, the above prompt for highest address will appear. Again, the
user may cancel this operation by pressing the ESC (Escape) key, instead of entering an address.

Enter Lowest Address BB:AAAA

Enter Lowest Address BB:AAAA 00:0000
Enter Highest Address BB:AAAA

 74

The LCD screen will echo the characters as they are sent to the Printer serial port. The LCD screen may be
difficult to read because the data has been formatted for the longer lines on the printer. Each line displays
the address and sixteen bytes of data in hexadecimal format.

Figure 89
DUMP to PRINTER - Brief

Figure 90
DUMP to PRINTER – Long

Press any key to return to the LOAD & DUMP MENU.

Address 0 1 2 3 4 5 6 7 8 9 A
 B C D E F
00:0000 5C 5B C5 00 5C 69 C5 00 5C 00 02
 00 5C 00 82 00
00:0010 5C 00 82 00 5C 72 B7 00 5C 43 EZ
 00 5C 00 82 00
00:0020 5C 26 04 00 7D 00 7D 00 00 00 00
 00 00 00 00 00
00:0030 00 00 00 00 03 00 03 00 35 01 BF
 01 8D 02 93 82
00:0040 0E 02 A8 02 00 04 00 04 66 00 00
 00 0Z 80 04 ZA
00:0050 DF 89 CF Z0 B7 BC 80 ZA 6C 02 00
 05 00 AF 00 00

Address 0 1 2 3 4 5 6 7 8 9 A
 B C D E F
00:0000 5C 5B C5 00 5C 69 C5 00 5C 00 02
 00 5C 00 82 00
00:0010 5C 00 82 00 5C 72 B7 00 5C 43 EZ
 00 5C 00 82 00
00:0020 5C 26 04 00 7D 00 7D 00 00 00 00
 00 00 00 00 00
00:0030 00 00 00 00 03 00 03 00 35 01 BF
 01 8D 02 93 82
00:0040 0E 02 A8 02 00 04 00 04 66 00 00
 00 0Z 80 04 ZA
00:0050 DF 89 CF Z0 B7 BC 80 ZA 6C 02 00

05 00 AF 00 00
00:0060 60 00 00 00 00 00 FF 00 00 BF 0

 75

5) DUMP to Screen ()

This LOAD & DUMP MENU item allows the user to examine a block of memory by dumping its contents,
appropriately formatted in hexadecimal, to the LCD screen.

Figure 91
DUMP to Screen First Prompt

When this option is selected, it will display the above prompt for the lowest address in the memory block.
The user may cancel this operation by pressing the ESC (Escape) key, instead of entering an address.

Figure 92
DUMP to Screen Second Prompt

After the user has entered a lowest address, the above prompt for highest address will appear. Again, the
user may cancel this operation by pressing the ESC (Escape) key, instead of entering an address.

The LCD screen will display the first ninety-six locations of the memory block. The address and eight
locations will be displayed on each line in hexadecimal format.

Figure 93
DUMP to Screen Display

Only twelve lines may be displayed at a time. The user may press any key to display successive screens of
data, until reaching the end of the selected memory block. After the last location of the memory block has
been displayed, any keypress will return to the LOAD & DUMP MENU.

Enter Lowest Address BB:AAAA

Enter Lowest Address BB:AAAA 00:0000
Enter Highest Address BB:AAAA

Address 0 1 2 3 4 5 6 7

00:0000 5C D3 CE 00 5C E1 CE 00
00:0008 5C 00 82 00 5C 00 82 00
00:0010 5C 00 82 00 5C AB C2 00
00:0018 5C D1 ED 00 5C 00 82 00
00:0020 5C 21 81 00 5C 00 5C 00
00:0028 00 00 00 00 00 00 00 00
00:0030 00 00 00 00 03 00 03 00
00:0038 04 04 84 04 00 04 00 04
00:0040 03 04 81 01 00 00 00 00
00:0048 0D D9 00 00 48 D9 00 04
00:0050 DF D9 01 20 4B C6 00 04
00:0058 6C 02 00 05 00 A7 0F 00

 76

6) ASCII Screen Dump ()

This LOAD & DUMP MENU item allows the user to examine a block of memory by dumping its contents,
appropriately formatted in ASCII, to the LCD screen.

Figure 94
ASCII Screen Dump First Prompt

When this option is selected, it will display the above prompt for the lowest address in the memory block.
The user may cancel this operation by pressing the ESC (Escape) key, instead of entering an address.

Figure 95
ASCII Screen Dump Second Prompt

After the user has entered a lowest address, the above prompt for highest address will appear. Again, the
user may cancel this operation by pressing the ESC (Escape) key, instead of entering an address.

The LCD screen will echo the characters as they are sent to the PC Link serial port. The LCD screen may
be difficult to read because the data is in S28 format.

Figure 96
ASCII Screen Dump Display

Press any key to return to the SETUP MENU screen.

Enter Lowest Address BB:AAAA 00:0000
Enter Highest Address BB:AAAA

Enter Lowest Address BB:AAAA

00:000 \ * * * \ * * * \ * * * \ * * *
00:0010 \ * * * \ * * * \ * * * \ * * *
00:0020 \ . * * * * * * * * * * * * * *
00:0030 * * * * * * * * * * * * * * * *
00:0040 * * * * * * * * * * * K * * *
00:0050 * * * * K * * * 1 * * * * * * *
00:0060 * * * * * * * * * * * * * * * *
00:0070 * 7 * * * * B * K * * * K * * *
00:0080 K * * * K * * * K * * * K * * *
00:0090 K * * * K * * * K * * * K * * *
00:00A0 K * * * * * * * K * * * K * * *
00:00B0 K * * * K * * * K * * * K * * *

 77

7) ALTER MEMORY ()

This option item allows the user to change the contents of RAM locations. First, a prompt will appear
requesting the first address to be modified. Any valid address may be entered, but only the RAM location
can be changed.

Figure 97
ALTER MEMORY Prompt

When a valid address response has been entered, then the currents of sixteen locations, beginning at the
specified address, will be displayed. The cursor will be positioned below the first location, and the user
may begin entering new data into consecutive locations.

Figure 98
ALTER MEMORY Edit Screen

The cursor will advance by spacing over to the next field as each value is typed. Backspacing is supported,
however only the ENTER key will exit and return control to the LOAD & DUMP MENU. The ESC
(Escape) key may behave unpredictably, and should not be used.

8) RETURN TO MAIN MENU ()

Pressing ESC (Escape) or selecting this option returns control to the MAIN MENU.

Enter Address BB:AAAA

Address 4 5 6 7 8 9 A B

00:1234 26 85 20 0C 00 00 01 40
00:123C 41 42 35 28 44 46 28 42
00:1234

 78

7) ROM MONITOR ()

Selecting the ROM MONITOR option allows the PC Link to gain access to the internal debugger of the
W65C265 chip. The PC, or other host, must be executing a communications program such as terminal
emulation, in order to use the Mensch ROM Monitor. When this menu item is selected, the startup
message and prompt will be sent via the PC link.

Figure 99
ROM Monitor Startup Prompt

The following commands are available from the PC, using the Mensch ROM Monitor.

Command Summary

Command Usage

A ALTER registers.
B Set BREAKPOINT
D DISPLAY memory block in hexadecimal.
F FILL memory block with constant.
G GO to address (JML execution).

H or ? Display HELP Menu
J Jump to subroutine using 24-bit address.
 (JSL execution)

M Examine/Change MEMORY location.
N Display/Change current DATE.
R Display REGISTERS.
S Read ‘S28’ record format.
T Examine/Change current TIME
U USER command prefix.
W WRITE block of memory as ‘S28’ records.
| Quick access: Examine/change registers.
/ Quick access: Examine/change memory.
> Quick access: Display NEXT memory location.
< Quick access: Display PREVIOUS location.

(space) Quick access: Display current memory location.
^ C Cancel current operation.

Figure 100
ROM Monitor Commands

This is just a summary. Full details of the commands and their proper usage may be found in the Mensch
Monitor ROM REFERENCE MANUAL.

MENSCH ROM Version 2.03
 © Copyright 1994
Assembled Wed Dec 14 11:09:04 1994

PCntr Acc Xreg Yreg Stack
00:E344 01 00 E0 CC 00 E1 01 FB

 DirRg F DBK
 00 00 22 00

Status Reg
N V M X D I Z C
0 0 1 0 0 0 1 0
> (Enter Any Command Here!)

 79

8) RUN PCMCIA SHELL ()

The PCMCIA Shell is a command interpreter. This MAIN MENU item allows the user to enter and
execute “DOS-like” commands which relate to the PCMCIA DOS-compatible file emulation.

Figure 101
RUN PCMCIA SHELL

When the above prompt (‘>’) appears, the user may enter a command (i.e. FORMAT, DIR, ect.) or type
“EXIT” to return to the MAIN MENU.

Figure 102
PCMCIA Shell Options

The available commands may change, but typing “HELP” should always display the current list.

PCMCIA SHELL

FORMAT
(Initialize Card)

DIR
(Directory)

DEL
(Delete)

EDIT
(Text File)

HELP
(Command List)

EXIT
(Return To
Main Menu)

CLS
(Clear Screen)

DATE
(Set Date)

1 3 42 5 6 7 8

MOS Version 1.00
Copyright 1994, Western Design Center
All Rights Reserved
>

 80

Programming The Mensch Computer

The Firmware provides some subroutines to allow user-provided software to perform basic I/O functions
with the keyboard, display, modem, printer, PC link interface, and controller. The user-provided software
will access these subroutines through a vector table in EPROM.

These subroutines will pass arguments through registers and use the carry-bit as an error flag. Normally,
the carry bit will return clear, indicating normal execution. The carry bit will be set if an error occurred. If
further qualification of the error is appropriate, a code will be returned in register-A.

Serial Port Programming Considerations

The W65C265 micro-controller chip contains four serial communication ports. These have been allocated
on the Mensch as follows: S0 = Keyboard, S1 = Printer, S2= Modem, and S3 = PC Link. The
Menschworks application and firmware library subroutines are available to support these uses. Within
limits, the serial port subroutines can be used as generic drivers in other configurations, such as: two
printers or two modems instead of one each.

Baud Rate Generation

The most important consideration when using more than two serial ports on the W65C265 micro-controller
involves baud rate selection. While there are four serial ports, there are only two timers11 available for
baud rate generation. Therefore, when three or four serial ports are used, at least one baud rate generator
must be shared.

The Mensch Computer is initially configured to operate the keyboard, printer, and PC link from a single
baud rate generator. This is purely a pragmatic decision, which assumes that the user has control of local
devices. The modem may communicate with a remote system, and therefore should have an independent
baud source.

Programmers may reconfigure which port uses which timer by writing a custom configuration pattern to the
Transmit Control Register (TCR) of the W65C265 chip. The TCR is mapped to address: $00:DF42.
Basically, each bit of the most significant nibble of the register selects either Timer 3 (0) or Timer 4 (1) as
the baud source. Likewise, the LSB must be clear if Timer 4 is used.

Developers who want to use the serial port registers directly should consult the W65C265
INFORMATION SPECIFICATION AND DATA SHEET for details of operation.

11 Each internal UART of the W65C265 may select either Timer 3 or Timer 4 as a baud rate source.
Timer 4 may, in some W65C265 configurations, be used for Pulse Input/Output instead of baud
rate generation. In that case, Timer 3 must be used by all four serial ports.

 81

Support Subroutines

The Firmware support library provides two subroutines to set baud rates in the standard configuration.

Baud Rate Support Subroutines

_SELECT_MODEM_BAUD_RATE (for modem port only)

SELECT_COMMON_BAUD_RATE (for all ports except modem)

Each subroutine allows the following baud rates: 110,150, 300, 600, 1200, 1800, 2400, 4800, 9600, 14400,
19200, 38400, 57600, and 115000.

Detailed descriptions of these library subroutines are provided in: Appendix B – Firmware Subroutine
Library.

Keyboard I/O Software

Most application software for the Mensch will interact with users via the keyboard and display. Therefore,
it is important to understand how the keyboard operates. The keyboard provided with the Mensch
Computer will automatically go in low power mode during periods of inactivity. This inactivity can be
forced by a command from the Mensch CPU.

Decoding Keyboard Status

Programs may use the RETRIEVE_KEYBOARD_STATUS subroutine to determine the current status of the
keyboard serial port. This status will reveal whether or not the keyboard has been disabled. If the
keyboard is active, status will also show availability and overflow conditions for the transmit and receive
buffers.

Decoding Keyboard Input

Application programs may accept keyboard input via the GET_KEYBOARD_CHARACTER subroutine.
Serial input subroutines in the firmware library use an option parameter. This specifies whether the
subroutine should return or wait when no character is available. The Mensch keyboard operates in two
modes. The ASCII Code Mode transmits single-byte ASCII characters. Under this mode, most keys will
generate different codes when pressed with the CTRL, ALT, or SHIFT keys. These modifier keys do not
generate a code themselves.

One code is generated for every key in Keyscan Code Mode, including each CTRL, SHIFT, and ALT key.
This mode may be useful for applications which need to redefine the meaning of keys, or implement
custom keyboards.

Complete descriptions of all keyboard codes are provided in Appendix E – Keycode To ASCII
Conversion Table.

Commanding The Keyboard

The keyboard provided with the Mensch Computer recognizes several commands from the CPU module.
Two firmware library subroutines are available to help application programs command the keyboard. The
first: SEND_BYTE_TO_KEYBOARD is a generic serial output subroutine for the keyboard port. It may be
used to send any characters to any serial device attached to that port.

The Mensch Computer Keyboard has several configurable parameters that control the operation of the
keyboard. Among the configurable items are: Change the repeat time and the repeat rate; Set the time
before keyboard goes into low-power operation; Read out the current Firmware version; and set the stat of
the LED’s.

 82

• Repeat Time:

The repeat time controls how soon after a single key has been pressed, when the keyboard will begin
processing the key as a repeating key. The number sent to the keyboard is in 10’s of milliseconds. For
example, to set the keyboard to start repeating a key after 500 ms, the data sent to the keyboard would be
50.

• Repeat Rate:

The repeat rate controls how soon, after a key has begun repeating, that another key code would be sent to
the Mensch. Again, this number is in 10’s of milliseconds.

Repeat Time and Repeat Rate are programmed at the same time. The computer must transmit an ASCII
‘R’ and then the 2 digits for the repeat time value followed by the 2 digits for the repeat rate value.

• Keyboard Idle Time:

This is the number of seconds that the keyboard will wait for another key to be pressed prior to going into
low-power mode. When the keyboard is in low power operation, the LED’s will be turned off but keyscans
will still occur but not at the higher speed during normal operation. When a key is pressed, the keyboard
will resume the higher speed and scan the keyboard for the key that woke it up. All LED’s will be restored
to their respective states prior to shut down.

The keyboard idle time is set by sending an ASCII ‘I’ followed by 2 digits for the number of seconds
before idling. Because only 2 digits can be transmitted, the idle time may be set from 1 second to 99
seconds.

• Setting LED States:

This function can be used to turn an LED on or turn it off. The data sent via this command is bit oriented.
The low bit represents the Num Lock LED and the 2nd bit represented the Caps Lock LED. The data is sent
by sending an ASCII ‘L’ followed by 1 byte that contains the states for the LED’s.

For example, if you wanted to turn on the Caps Lock LED and turn off the Num Lock LED you would
send: ‘L’ 0x02. To turn on both LED’s you would send ‘L’ 0x03.

• Reading Firmware Version:

The Mensch Computer may also read out the current firmware version from the processor. To do this the
computer would send an ASCII ‘V’. The keyboard will then begin transmitting a string of characters
followed by the ACK (0x06) character. The string being sent will be variable in length.

 83

Support Subroutine

The Firmware support library provides several subroutines to facilitate keyboard I/O in application
programs.

Keyboard Support Subroutines

 _CONTROL_KEYBOARD_PORT

 _GET_KEYBOARD_CHARACTER

 _RETRIEVE_KEYBOARD_STATUS

 _SEND_BYTE_TO_KEYBOARD

 SELECT_COMMON_BAUD_RATE

Detailed descriptions of these library subroutines are provided in: Appendix B – Firmware Subroutine
Library.

Those library subroutines which support generalized input/output streams may be configured to
communicate with the keyboard. Refer to the descriptions of CONTROL_INPUT and
CONTROL_OUTPUT for specific details.

Printing From Application Programs

It is often useful for application programs to generate hardcopy output. Programs on the Mensch will use
the serial printer port via library subroutines. These routines allow the program check the printer port for
availability, poll the serial printer, and send characters to the device to be printed. When not needed, the
printer port may be turned: OFF to conserve power.

Support Subroutines

The Firmware support library provides several subroutines to facilitate printer usage in application
programs.

Printer Support Subroutines

 _PtLn
 _CONTROL_PRINTER_PORT (ON/OFF)
 _PtCode
 _GET_PRINTER_BYTE (from printer port)
 _SetText*
 _PRINT_BYTE (Send via printer port)
 _SetGraph*
 _RETRIEVE_PRINTER_PORT_STATUS
 _SetGraphText*
 SELECT_COMMON_BAUD_RATE
 _PtScreen*

 *NOTE: These subroutines are used to support the print screen function which
 automatically copies the LCD memories to the printer port.

Detailed descriptions of these library subroutines are provided in: Appendix B – Firmware Subroutine
Library.

Those library subroutines which support generalized input/output streams may be configured to
communicate with the printer port. Refer to the descriptions of the: CONTROL_INPUT and
CONTROL_OUTPUT subroutines for specific details.

 84

Modem Communications

Many types of applications require communications with a remote system. This usually is achieved by
using modems and a telephone link. The Mensch allows user application programs to do this via the serial
modem port. Library subroutines are available so the software can check the modem port for availability,
poll and configure Hayes-compatible modems, receive and send characters to another modem. The modem
port on the Mensch has an independent baud rate generator which may configure as needed. When not in
use, the modem port may be turned: OFF to conserve power.

Support Subroutines

The Firmware support library provides several subroutines to facilitate modem communications in
application programs.

 Modem Support Subroutines

 _CONTROL_MODEM_PORT
 GET_MODEM_RESPONSE
 _GET_MODEM_BYTE
 MODEM_ANSWER
 _RETRIEVE_MODEM_PORT_STATUS
 MODEM_DIAL
 _SELECT_MODEM_BAUD_RATE
 MODEM_HANG_UP
 _SEND_A_MODEM_BYTE
 MODEM_REDIAL
 _SEND_MODEM_STRING

Detailed descriptions of these library subroutines are provided in: Appendix B – Firmware Subroutine
Library.

Those library subroutines which support generalized input/output streams may be configured to
communicate with the modem port. Refer to the descriptions of the: CONTROL_INPUT and
CONTROL_OUTPUT subroutines for specific details.

 85

PC Link Programming

The PC Link serial port may also be used to communicate with another system via a modem. This port is
limited, because it uses the common baud rate generator in the normal Mensch configuration. Application
programs may choose to use this port in a variety of ways. Initially it has been allocated for use as a direct
connection link to a PC or other desktop/portable computer. This will be helpful to developers who do
most of their programming and editing on an external development system.

Support Subroutines

The Firmware support library provides several subroutines to facilitate communication via the PC link
serial port in application programs.

PC Link Support Subroutines

 _CONTROL_PC_PORT

 _RETRIEVE_PC_PORT_STATUS

 GET_BYTE_FROM_PC

 SELECT_COMMON_BAUD_RATE

 SEND_BYTE_TO_PC

Detailed descriptions of these library subroutines are provided in: Appendix B – Firmware Subroutine
Library.

Those library subroutines which support generalized input/output streams may be configured to
communicate with the PC link port. Refer to the descriptions of the: CONTROL_INPUT and
CONTROL_OUTPUT subroutines for specific details.

 86

Controller Port Usage

Developers may choose the Mensch as a prototyping platform for product applications which do not require
a game controller. These configurations may choose to use this port for other purposes. It should be noted
that only seven of the eight bits are normally user definable. The MSB will still control the +5 volt supply
to the connector. There is a jumper (JMP4) which may be used to change this feature and allow the user to
define the entire 8-bit port.

Game Programming

The most significant bit of the port (PB7) is used as an output to switch the supply voltage to the controller
connector. If the controller has been turned: OFF, via the CONTROL_CONTROLLER_PORT subroutine,
then the other returned status bits will be misleading.

Switch encoding may be interpreted from the following table:

PB6 PB5 PB4 PB3 PB2 PB1 PB0 Notes
Start 0 A - - Down Up

C 1 B Right Left Down UP

Support Subroutines

There are only several subroutines which relate directly to using the controller port within application
programs:

Controller Support Subroutines

 _CONTROL_CONTROLLER_PORT

 _GET_CONTROLLER_DATA

 _RETRIEVE_CONTROLLER_STATUS

Detailed descriptions of these library subroutines are provided in: Appendix B – Firmware Subroutine
Library.

 87

Using the LCD Display

The LCD display provided with the normal Mensch configuration supports both character mode and
graphics mode. It will display text as sixteen lines of forty characters each. The graphics resolution is 240
horizontal and 128 vertical dots. Other modes are available and application programs may choose to use
them.

This LCD module itself contains a Densitron LCD (LM3229A128G240SNG) and a Toshiba controller
(T6963C) 12 board. This controller board is capable of driving other LCD displays. Some developers may
choose a different one in their configuration.

The firmware library subroutines support the normal Mensch configuration. They may not work in other
modes or with other LCD displays.

Accessing The Display

The firmware allows programmers to check and control the configuration and availability of the LCD
display from application programs. Specific functions are available to set the display mode to text,
graphics, or both. In text mode and graphics mode there are options regarding how output is displayed.
When both modes are used, there are options regarding how the images are combined.

Support Subroutines

Library subroutines available to programmers when writing configuring or checking LCD are listed in the
following table:

LCD Configuration Support Subroutines

 _CONTROL_DISPLAY (Power)

 RETRIEVE_DISPLAY_STATUS

12 The data sheet on the LM3229A128G240SNG and Application Notes for the T6963C LCD
Graphics Controller from Densitron provide a detailed description of this display and its
operation.

 88

Displaying Text

Basically, text may be written to the display after positioning the cursor at the desired location. As each
character is written, the cursor will advance to the next position. When the cursor reaches the last position,
at line 16 and column 40, it will not advance. Any additional characters will just overwrite the last
location. This is also true if the right arrow or down arrow character is used to advance the cursor.

In a similar manner, the backspace, left arrow, and up arrow characters cannot “back up” the cursor
beyond the upper left corner of the screen, at line 1 and column 1.

Support Subroutines

Library subroutines for programmers to use when writing to the LCD screen in text mode:

LCD Text Support Subroutines

 CLEAR_LCD_DISPLAY

 POSITION_TEXT_CURSOR (@ Row & Column)

 CLEAR_TO_END_OF_LINE (Text line)

 WRITE_LCD_CHARACTER (@ Text Cursor Position)

 DISP_LCD_STRING (@ Text Cursor Position)

 WR_LCD_STRNG

 RD_LCD_STRNG

 MOVE_PAGE_TO_BUFF

 MOVE_BUFFER_TO_LCD

 _WrDec

Those library subroutines which support generalized output streams may also be configured to write to the
LCD screen. Refer to the description of the: CONTROL_OUTPUT subroutine for specific details.

 89

A special set of library subroutines has been provided to assist developers in producing their own menus on
the LCD screen.

Menuing Support Subroutines

 _CHECK_YN

 _DISP_LCD_HEADER

 _DO_MAIN_MENU

 _GET_BIN_NUM

 _Get_HiLo

 _TIME_DATE_CHK

 MENU_POINT

 MENU_SETUP

This basic set may be used as building block functions. Programmers may use them to develop more
sophisticated libraries of their own. Refer to: Appendix B – Firmware Subroutine Library for more
information on using these subroutines.

Displaying Graphics

Programmers intending to use the Mensch LCD screen in graphics mode are advised to study the data sheet
on the LM3229A128G240SNG LCD from Densitron, and the associated application notes on the Toshiba
controller board.

Support Subroutines

Library subroutines for programmers to use when plotting graphics on the LCD screen:

LCD Graphics Support Subroutines

 _Line
 CLEAR_LCD_DISPLAY
 _HLine
 POSITION_PIXEL (@ Coordinates: H, V)
 _VLine
 WRITE_PIXEL (@ Graphics Cursor Position)
 _SetFill
 _SetColor
 _ClearFill
 _ClearColor
 _Box
 _Point
 _Circle

This basic set may be used as building block functions. Programmers may use them to develop more
sophisticated libraries of their own. Refer to: Appendix B – Firmware Subroutine Library for more
information on using these subroutines.

 90

LCD Screen Printing

The contents of the Mensch LCD screen may be copied to the printer using firmware functions. Options
allow programmers to select only text memory, only graphics memory, or both when dumping the LCD
screen to the printer port.

Support Subroutines

The specific library subroutines for programmers to use when dumping the LCD screen are listed in the
following table:

LCD Print Screen Support Subroutines

 _SetText

 _SetGraph

 _SetGraphText

 _PtScreen

This basic set may be used as building block functions. Programmers may use them to develop more
sophisticated libraries of their own. Refer to: Appendix B – Firmware Subroutine Library for more
information on using these subroutines.

 91

Sound Generation

The Mensch is built around the W65C265 which has the essential circuitry to perform PWM I/O. This
offers an inexpensive, simple, “low-tech” approach to customized digital audio in consumer products. Two
of the timers are configurable as digital sine-wave tone generators. These are suitable for DTMF or modem
usage. The W65C265 has already been proven in “Caller ID” products. This system is an ideal
development platform for ADSI13 telephones.

Details on using the tone generators directly is covered in the W65C265S INFORMATION,
SPECIFICATION, AND DATA SHEET form WDC. Example configuration values for the Mensch
wherein the main frequency is 3,6864 MHz are shown in the following table:

DTMF Tone (Hz) Register Value Error (%)
697 $014A 0.133
770 $012A 0.073
852 $010D 0.156
941 $00F4 0.062

1209 $00BE 0.225
1336 $00AB 0.263
1477 $009B 0.005
1633 $008C 0.063

Support Subroutines

Library subroutines for programmers to use when attempting to generate sound with the Mensch Computer:

Audio Support Subroutines

 _SEND_BEEP

 _SEND_DTMF_DIGIT

 CONTROL_SPEAKER_AMP

 CONTROL_TONES

This basic set may be used as building block functions. Programmers may use them to develop more
sophisticated libraries of their own. Refer to: Appendix B – Firmware Subroutine Library for more
information on using these subroutines.

13 The Analog Display Services Interface (ADSI) has been defined by Bell Communications
Research to enable a visual context-sensitive user interface to telephone network services.

 92

DOS-Compatible File Support

The Mensch has two slots for IC memory cards. They each appear to be memory blocks to regular
programs. The firmware library provides subroutines which can read and manipulate DOS-compatible
“files” on these IC memory cards. This allows the exchange of data with DOS-compatible laptop
computers on a common physical media.

The DOS-compatible File Allocation Table or FAT always resides at the low end of any formatted IC card.
The LOW IC card of the Mensch is physically mapped to begin at Bank #1. Most IC cards only decode as
many address lines as the actually need. This allows the Mensch to view Bank #0 of an IC card as the last
bank on the card. Therefore, an IC card with a proper DOS-compatible file structure, inserted into the
LOW slot, may be decoded according to the following table:

Card Size Card Mapped Banks Range FAT Mapped To Bank #
128K 1-2 2
256K 1-4 4
512K 1-8 8
1M 1-$10 $10
2M 1-$20 $20

4M or
Larger

Not usable for
DOS-compatible files.

Lowest bank and above
$3F lost.

Support Subroutines

The following library subroutines are available to application programs when accessing the IC memory
cards as DOS-compatible file devices:

FCLOSE FGETW FPUTBLOCK GETDFREE

FDELETE FILELENGTH FPUTC IS_CARD_INSERTED

FGETBLOCK FINDFIRST FPUTS LOG_DRIVE

FGETC FOPEN FPUTW OS_SHELL

FGETS FORMAT FSEEK SELECT_DISK

This basic set may be used as building block functions. Programmers may use them to develop more
sophisticated libraries of their own. Refer to: Appendix B – Firmware Subroutine Library for more
information on using these subroutines.

 93

System Functions

Many elements of the Mensch are not typically within the domain of any particular kind of application
program. The time-of-day clock/calendar, selectable alarm function, and power management are examples
of such elements.

Time-Of-Day Clock/Calendar

The time-of-day clock feature of the Mensch Computer operates even when the system is in low-power
mode. This is because it resides in the internal RAM and ROM of the W65C265S itself. The time-of-day
clock may also be set and read by application programs.

Support Subroutines

Library subroutines for programmers to use when accessing the time-of-day clock/calendar:

Clock/Calendar
Support Subroutines

 READ_DATE

 SET_DATE

 READ_TIME

 SET_TIME

This basic set may be used as building block functions. Programmers may use them to develop more
sophisticated libraries of their own. Refer to: Appendix B – Firmware Subroutine Library for more
information on using these subroutines.

Programmable Alarm

A built-in alarm function uses the time-of-day clock. The user may set or check the alarm from the
keyboard via utility programs, or within software applications via library subroutines.

Support Subroutines

The library subroutines which support application programs in accessing the programmable alarm include:

Alarm Support Subroutines

 GET_ALARM_STATUS

 READ_ALARM

 RESET_ALARM

 SET_ALARM

This basic set may be used as building block functions. Programmers may use them to develop more
sophisticated libraries of their own. Refer to: Appendix B – Firmware Subroutine Library for more
information on using these subroutines.

 94

Interval Tracking

Two kinds of interval tracking support are available in the firmware subroutine library. The first uses
software timers to monitor timeout events, while the other uses the STOPWATCH function to measure
elapsed time intervals.

Counter Usage

There are five software timers, 16-bit variables, which may be initialized via the _SET_COUNT subroutine.
The value in each timer will be decremented at regular (1/100th Sec.) intervals, until it reaches zero. These
software timers are just 16-bit down-counters which may be read via the _RD_COUNT subroutine.

Stopwatch Usage

The STOPWATCH function may be used as an event timer. The STOPWATCH is a 32-bit counter which
counts up at regular (1/100th Sec.) intervals.

The STOPWATCH may be reset to zero via the _CLR_STPWTCH subroutine.

The current value of the STOPWATCH may be read via the _RD_STPWTCH subroutine.

Power Management

A voltage detection circuit in the Mensch hardware may be monitored by software. Application software
may check to determine whether the system is operating off power from batteries or the external
charger/power module. If the system is using batteries alone, the condition of the batteries may be
monitored to avoid problems. The Firmware provides a library subroutine for programmers to use when
checking the voltage detection status: CHECK_VOLTAGE.

If the battery condition is marginal, the ENGAGE_LOW_POWER_MODE subroutine allows the user
software to place the system in low-power mode. Applications may also use some of the features and
elements of the Mensch which permit programs to selectively manipulate power switching controls over
subsystems.

Support Subroutines

Several Firmware library subroutines have been provided to facilitate power management within the
system:

Power Management Support Subroutine

 _CHECK_VOLTAGE

 _CONTROL_CONTROLLER_PORT

 _CONTROL_DISPLAY

 _CONTROL_KEYBOARD_PORT

 _CONTROL_MODEM_PORT

 _CONTROL_PC_PORT

 _CONTROL_PRINTER_PORT

 _ENGAGE_LOW_POWER_MODE

 CONTROL_SPEAKER_AMP

Programmers may use these and other library subroutines to develop more sophisticated libraries of their
own. Refer to: Appendix B – Firmware Subroutine Library for more information.

 95

Mensch FORTH Support

Charles Moore, of the National Radio Astronomy Observatory, developed the Forth Programming language
in the 1960’s. He intended to use it specifically in instrumentation and control applications related to radio
astronomy. Forth became a popular development tool during the 1970’s among a broad base of hackers
and hobbyists.

The Forth Interest Group was formed in 1978 to encourage the interchange of ideas and experiences with
Forth. The first fig- Forth standard was defined in 1979 and later updated in 1983. Implementations of
Forth have been made available for various platforms. Many Forth compilers have been released into the
public domain.

The popularity of Forth arises from the ease of use. Programs can be easily written and debugged in Forth,
even by beginners. It is a very transportable language, so programs written on one system can be executed
on another.

The Western Design Center expects to see a 16-bit implementation of Forth executing on the Mensch,
within 1Q95. It is an adaptation of an earlier version of Forth for the W65C802. This involved the Apple
IIgs configuration which differs from the Mensch. Mensch Forth will be available from a third-party
developer and through WDC.

 96

Appendices

Appendix A – Replacing The Battery Pack

The battery pack may be replaced by first removing the screws from the front panel of the CPU module.

Figure 103
Mensch Computer

Front Panel

Next, remove the plate and frame allowing the main board to slide out of the encasement.

Figure 104
Replacing The Battery Pack

Unplug the existing battery pack and remove it from the board. The battery connector is keyed and cannot
be incorrectly installed. Using the guides, slide the main board back into the encasement. Replace the
front panel, frame, and screws.

Battery
Pack

 97

Appendix B – Firmware Subroutine Library

The ROM Monitor and Mensch Operating System provide some subroutine vectors for basic I/O and
various useful functions in the Mensch. Some of these subroutines allow user-provided software to access
the keyboard, display, modem, printer, PC link interface and controller. Others relate to power
management, audio output, timing, or data conversion.

Library Vector Table

The vector tables for these subroutines begin at specific locations in the W65C265S ROM ($00:E000), and
the EPROM of the Mensch ($00:8010). The bases of these tables and the respective offsets of defined
vectors will not move as new vectors are defined.

Power Management Support

 _CHECK_VOLTAGE $00:806B
 _ENGAGE_LOW_POWER_MODE $00:806E
 (_CONTROL_CONTROLLER_PORT $00:8065)
 (_CONTROL_DISPLAY $00:805C)
 (_CONTROL_KEYBOARD_PORT $00:8059)
 (_CONTROL_PRINTER_PORT $00:805F)
 (_CONTROL_MODEM_PORT $00:8062)
 (_CONTROL_PC_PORT $00:811F)
 (CONTROL_SPEAKER_AMP $00:8104)

Development Interface Support

 XS28IN $00:E081
 DumpS28 $00:E012

Clock/Calendar/Alarm Support

 GET_ALARM_STATUS $00:E030
 READ_ALARM $00:E051
 READ_DATE $00:E054
 READ_TIME $00:E057
 RESET_ALARM $00:E05A
 SET_ALARM $00:E06F
 SET_DATE $00:E075
 SET_TIME $00:E078

Audio Output Support

 _SEND_BEEP $00:8074
 _SEND_DTMF_DIGIT $00:8071
 CONTROL_TONES $00:E009
 (CONTROL_SPEAKER_AMP $00:8104)

Game Controller Support

 _GET_CONTROLLER_DATA $00:8068
 _RETRIEVE_CONTROLLER_STATUS $00:8056
 (_CONTROL_CONTROLLER_PORT $00:8065)

Serial I/O – Baud Rate Generators

 (_SELECT_MODEM_BAUD_RATE $00:8047)
 (SELECT_COMMON_BAUD_RATE $00:E060)

 98

Serial I/O – Keyboard

 _GET_KEYBOARD_CHARACTER $00:8023
 _RETRIEVE_KEYBOARD_STATUS $00:8020
 _SEND_BYTE_TO_KEYBOARD $00:8026
 (_CONTROL_KEYBOARD_PORT $00:8059)
 (SELECT_COMMON_BAUD_RATE $00:E060)

Serial I/O – Printer

 _GET_A_PRINTER_BYTE $00:8041
 _PRINT_A_BYTE $00:803E
 _PtLn $00:81A7
 _PtCode $00:81A4
 _RETRIEVE_PRINTER_PORT_STATUS $00:803B
 (_CONTROL_PRINTER_PORT $00:805F)
 (SELECT_COMMON_BAUD_RATE $00:E060)

Serial I/O – Modem

 _GET_MODEM_BYTE $00:8050
 _RETRIEVE_MODEM_PORT_STATUS $00:8044
 _SEND_A_MODEM_BYTE $00:804A
 _SEND_MODEM_STRING $00:804D
 GET_MODEM_RESPONSE $00:8116
 MODEM_ANSWER $00:8119
 MODEM_DIAL $00:80F8
 MODEM_HANG_UP $00:80FB
 MODEM_REDIAL $00:811C
 (_CONTROL_MODEM_PORT $00:8062)
 (_SELECT_MODEM_BAUD_RATE $00:8047)

Serial I/O – PC Link

 _RETRIEVE_PC_PORT_STATUS $00:8053
 GET_BYTE_FROM_PC $00:8033
 SEND_BYTE_TO_PC $00:8063
 (_CONTROL_PC_PORT $00:811F)
 (SELECT_COMMON_BAUD_RATE $00:E060)

General I/O Stream Support

 _CONTROL_INPUT $00:80DD
 _CONTROL_OUTPUT $00:80E0
 BACKSPACE $00:E003
 GET_3BYTE_ADDR $00:E02D
 GET_CHR $00:E036
 GET_PUT_CHR $00:E03C
 GET_STR $00:E03F
 PUT_CHR $00:E04B
 PUT_STR $00:E04E
 SEND_CR $00:E066
 SEND_HEX_OUT $00:E06C
 SEND_SPACE $00:E069
 WR_3_ADDRESS $00:E07E

 99

Print Screen Support

 _PtScreen $00:81AA
 _SetText $00:81B3
 _SetGraph $00:81B0
 _SetGraphText $00:81AD

Liquid Crystal Display Support – General

 CLEAR_LCD_DISPLAY $00:802C
 RETRIEVE_DISPLAY_STATUS $00:8029
 (_CONTROL_DISPLAY $00:805C)

LCD Support – Text Mode

 _WrDec $00:8180
 CLEAR_TO_END_OF_LINE $00:8032
 DISP_LCD_STRING $00:8038
 MOVE_PAGE_TO_BUFF $00:80FE
 MOVE_BUFFER_TO_LCD $00:8101
 POSITION_TEXT_CURSOR $00:802F
 RD_LCD_STRNG $00:80DA
 WR_LCD_STRNG $00:80D7
 WRITE_LCD_CHARACTER $00:8035

LCD Support – Graphics Mode

 _Box $00:8198
 _Circle $00:8195
 _ClearColor $00:8189
 _ClearFill $00:818F
 _GetGrStatus $00:81BF
 _GetPoint $00:81BC
 _HLine $00:819E
 _Line $00:8192
 _Point $00:81A1
 _SetColor $00:8186
 _SetFill $00:818C
 _VLine $00:819B

Menu Support

 _CHECK_YN $00:80F2
 _DISP_LCD_HEADER $00:80EF
 _DO_MAIN_MENU $00:8107
 _TIME_DATE_CHK $00:80EC
 Get_HiLo $00:80F5
 MENU_SETUP $00:80E6
 MENU_POINT $00:80E9

IC Card Support – General

 IS_CARD_INSERTED $00:808C

 100

IC Card Support – PCMCIA Disk Emulation

 _OS_SHELL $00:8077
 DIR_COMMND $00:804D
 FCLOSE $00:8092
 FDELETE $00:80C2
 FGETBLOCK $00:80B3
 FGETC $00:80AA
 FGETS $00:80B0
 FGETW $00:80AD
 FILELENGTH $00:80BC
 FINDFIRST $00:80B9
 FOPEN $00:808F
 FORMAT $00:807A
 FPUTBLOCK $00:80A7
 FPUTC $00:809E
 FPUTS $00:80A4
 FPUTW $00:80A1
 FSEEK $00:8098
 LOG_DRIVE $00:807D
 SELECT_DISK $00:80D1
 FNSPLIT $00:80B6
 STRCMP $00:80C5
 DISPLAY_PCMCIA_ERROR $00:8080

Timing and Counting

 _CLR_STPWTCH $00:8128
 _RD_COUNT $00:8125
 _RD_STPWTCH $00:812B
 _SET_COUNT $00:8122

Miscellaneous

 _Bin2BCD $00:8183
 _GET_BIN_NUM $00:80E3
 _INIT_DP_POINTER $00:8110
 _RESTORE_DP_POINTER $00:8113
 _START $00:810A

 101

ROM Monitor Subroutines

 Alter_Memory $00:E000
 ASCBIN $00:E087
 BIN2DEC $00:E08B
 BINASC $00:E08F
 DO_LOW_POWER_PGM $00:E00C
 DUMPREGS $00:E00F
 Dump_1_line_to_Output $00:E015
 Dump_1_line_to_Screen $00:E018
 Dump_to_Output $00:E01B
 Dump_to_Printer $00:E01E
 Dump_to_Screen $00:E021
 Dump_to_Screen_ASCII $00:E024
 Dump_It $00:E027
 FILL_Memory $00:E02A
 GET_HEX $00:E039
 Get_Address $00:E042
 Get_E_Address $00:E045
 Get_S_Address $00:E048
 HEXIN $00:E093
 IFASC $00:E097
 ISDECIMAL $00:E09B
 ISHEX $00:E09F
 RESET $00:E084
 SBREAK $00:E05D
 SET_Breakpoint $00:E072
 UPPER_CASE $00:E0A3
 VERSION $00:E07B

 102

Library Subroutine Descriptions

The Firmware provides some subroutines to allow user-provided software to perform basic I/O functions
with the keyboard, display, modem, printer, PC link interface, and controller. The user-provided software
will access these subroutines through a vector table in EPROM14.

These subroutines will generally pass arguments through registers and use the carry-bit as an
error/exception flag. Normally, the carry-bit will return clear, indicating normal execution. The carry-bit
will be set if an error occurred or a notable condition was detected. If further qualification of the error is
appropriate, a code will be returned in register-A. Refer to the individual description of each subroutine for
specific details.

_Bin2BCD

 DESCRIPTION:
 This subroutine will convert a 16-bit unsigned value into an equivalent BCD number.

 VECTOR:
 $00:8183 _Bin2BCD

 EXPECTS:
 The value to be converted must appear in 16-bit register-X.

 RETURNS:
 Least significant digits of the BCD number are returned in 16-bit register-X and the most
 significant BCD digits in 8-bit register-A.

 Example: If Value = 65535 Then Register-A = $06
 Register-X = $5535

 ERRORS:
 No meaningful errors are detected.

14 The Western Design Center, Inc. recommends that software developers use an include file in their
source programs, which assigns symbolic names to these vectors. A current file is available from
WDC.

 103

_Box

 DESCRIPTION:
 This subroutine will plot an orthogonal box on the display in graphics mode.

 VECTOR:
 $00:8198 _Box

 EXPECTS:
The first corner coordinates of the box must be in the most significant bytes of 16-bit register-
X and 16-bit register-Y. The coordinates of the diagonally opposite corner must be in the
least significant bytes of the same registers.

 RETURNS:
 Normal operation returns with the carry-bit = clear.

 ERRORS:
If either coordinate in register-X exceeds 239 or either coordinate in register-Y exceeds 127,
then this subroutine will return with the carry-bit = set and the box will not be drawn.

_CHECK_VOLTAGE

 DESCRIPTION:
 This subroutine will sample the voltage sensor status.

 VECTOR:
 $00:806B _CHECK_VOLTAGE

 EXPECTS:
 No input arguments.

 RETURNS:
 Voltage sensor status in 8-bit register-A:
 $00 = External power is available.

 $01 = Running on batteries with
adequate power available.

 $FF = Running on batteries and the
batteries are low.

 ERRORS:
No meaningful errors are detected. The carry-bit normally will return clear, but will be set if
register-A is non-zero.

 104

_CHECK_YN

 DESCRIPTION:
 This subroutines will check for “Yes” or “No” responses from keyboard input.

 VECTOR:
 $00:80F2 _CHECK_YN

 EXPECTS:
No input arguments.

 RETURNS:
 Carry-bit set means that an ESC (Escape) character was detected.

Carry-bit clear means an appropriate “Yes or No” response character has been detected. The
code for this will be in the 8-bit register-A, wherein:

 0 = ‘N’ or ‘n’ for “No”
 or
 1 = ‘Y’ or ‘y’ for “Yes”

 ERRORS:
No meaningful errors are detected.

_Circle

 DESCRIPTION:
 This subroutine will plot a circle on the display in graphics mode.

 VECTOR:
 $00:8195 _Circle

 EXPECTS:
 Center of circle coordinates in 16-bit register-X and 16-bit register-Y.

 Radius of circle in 8-bit register-A.

 RETURNS:
 Normal operation returns with the carry-bit = clear.

 ERRORS:
If the coordinate in register-X exceeds 239 or the coordinate in register-Y exceeds 127, then
this subroutine will return with the carry-bit = set and the circle will not be drawn.

 NOTE:
If any portion of the circle has coordinates outside of the boundaries of the display, then that
part will not be drawn.

 105

_ClearColor

 DESCRIPTION:
This subroutine will clear the COLOR flag used by other graphics plotting subroutines. The
flag is used to determine whether pixel points should be plotted in white or black.
 (Clear = White / Set = Black)

 VECTOR:
 $00:8189 _ClearColor

 EXPECTS:
No input arguments.

 RETURNS:
 No arguments returned.

 ERRORS:
No meaningful errors are detected.

_ClearFill

 DESCRIPTION:
This subroutine will clear the FILL flag used by other graphics plotting subroutines. The flag
is used to determine whether or not the plotting subroutines should fill the shapes when they
draw them.
 (Set = Fill / Clear = No Fill)

 VECTOR:
 $00:818F _ClearFill

 EXPECTS:
No input arguments.

 RETURNS:
 No arguments returned.

 ERRORS:
No meaningful errors are detected.

 106

_CLR_STPWTCH

 DESCRIPTION:
The STOPWATCH function may be used as an event timer. This subroutine will reset the
STOPWATCH to zero. The STOPWATCH is a 32-bit counter which counts up at regular
(1/100th Sec.) intervals. The current value of the STOPWATCH may be read via the
_RD_STPWTCH subroutine.

 VECTOR:
 $00:8128 _CLR_STPWTCH

 EXPECTS:
No input arguments.

 RETURNS:
 No arguments returned. All received registers are saved and restored before returning.

 ERRORS:
No meaningful errors are detected.

_CONTROL_CONTROLLER_PORT

 DESCRIPTION:
This subroutine allows the programmer to enable or disable the supply voltage delivered to
the controller port connector.

 VECTOR:
 $00:8065 _CONTROL_CONTROLLER_PORT

 EXPECTS:
Control code in 8-bit register-A:
 Zero = Supply OFF
 Any
 Non-Zero = Supply ON

 RETURNS:
 No arguments returned, no registers changed.

 ERRORS:
No meaningful errors.

 CAUTION:
It is not meaningful to call this subroutine if the circuit board in the CPU module has been
configured to use the controller port as an ordinary 8-bit I/O port. (Refer to the appropriate
schematic diagrams for more information.)

 107

_CONTROL_DISPLAY

 DESCRIPTION:
This subroutine allows the programmer to reset or manipulate the LCD display characteristics.
It can enable or disable the text display, or the graphics display. If both are enabled, this
routine can define how they interact.

 VECTOR:
 $00:805C _CONTROL_DISPLAY

 EXPECTS:
Control code in 8-bit register-A.

Bit
#7

Bit
#6

Bit
#5

Bit
#4

Bit
#3

Bit
#2

Bit
#1

Bit
#0 Meaning

0 0 0 0 0 0 0 0 Display is turned: OFF.

- - - - - - - 0 Cursor will not blink, if
enabled.

- - - - - - - 1 Cursor will blink if
enabled.

- - - - - - 0 - Text cursor: OFF
- - - - - - 1 - Text cursor: ON
- - - - - 0 - - Text display: OFF
- - - - - 1 - - Text display: ON
- - - - 0 - - - Graphics display: OFF
- - - - 1 - - - Graphics display: ON

- - 0 0 - - - - OR graphic and text
displays.

- - 0 1 - - - - EXOR (exclusive OR)
graphic and text displays.

- - 1 0 - - - -
Undefined option.
(Sent to the T6963C LCD
graphics controller.)

- - 1 1 - - - - AND graphic and text
displays.

- 0 - - - - - - Select 6x8 graphic mode.
- 1 - - - - - - Select 8x8 graphic mode.
1 - - - - - - - Reset using pattern.

1 - 0 0 0 0 0 0

Reset using default setup
parameters. Display = ON,
Blinking cursor, and Text
OR’ed w/6x8 Graphics.

 RETURNS:
 No arguments returned.

 ERRORS:
No meaningful errors.

 108

_CONTROL_INPUT

 DESCRIPTION:
This subroutine sets up the input paths for GET_CHR and other stream oriented subroutines.
It turns input stream ports ON & OFF.

 VECTOR:
 $00:80DD _CONTROL_INPUT

 EXPECTS:
Control information in 8-bit register-A.

Bit
#7

Bit
#6

Bit
#5

Bit
#4

Bit
#3

Bit
#2

Bit
#1

Bit
#0 Meaning

- - - - - - - 0 Do not affect keyboard input.
- - - - - - 0 - Do not affect printer port input.
- - - - - 0 - - Do not affect modem port input.
- - - - 0 - - - Do not affect PC port input.
0 - - - - - - 1 Disable keyboard input.
0 - - - - - 1 - Disable printer port input.
0 - - - - 1 - - Disable modem port input.
0 - - - 1 - - - Disable PC port input.
1 - - - - - - 1 Enable keyboard input.
1 - - - - - 1 - Enable printer port input.
1 - - - - 1 - - Enable modem port input.
1 - - - 1 - - - Enable PC port input.

 RETURNS:
 No arguments returned.

 ERRORS:
No meaningful errors.

 109

_CONTROL_KEYBOARD_PORT

 DESCRIPTION:
This subroutine allows the programmer to clear the I/O buffers and configure the
characteristics of the port. It does not select the word length, parity, or number of stop bits.
These default to 8-bits, no parity, and one stop bit.

 VECTOR:
 $00:8059 _CONTROL_KEYBOARD_PORT

 EXPECTS:
Keyboard port configuration code in 8-bit register-A.

Bit
#7

Bit
#6

Bit
#5

Bit
#4

Bit
#3

Bit
#2

Bit
#1

Bit
#0 Meaning

- - - - - - - 0 No effect on port operation.
- - - - - - 0 - No effect on port operation.
- - - - - 0 - - No effect on port operation.
- - - - 0 - - - No effect on port operation.
- - - 0 - - - - No effect on port operation.
- - 0 - - - - - No effect on port operation.
- 0 - - - - - - No effect on port operation.
0 - - - - - - 1 No effect on port operation.
0 - - - - - 1 - Disable transmit interrupts.
0 - - - - 1 - - Disable XON/XOFF handshaking.
0 - - - 1 - - - Send “start” message to keyboard.
0 - - 1 - - - - Set DTR signal: FALSE (DTR0 = 1)
0 - 1 - - - - - Disable Echo mode.
0 1 - - - - - - Disable UART receive.
1 - - - - - - 1 Clear port input buffer.
1 - - - - - 1 - Clear port output buffer.
1 - - - - 1 - - Enable XON/XOFF handshaking.
1 - - - 1 - - - No effect on port operations.
1 - - 1 - - - - Set DTR signal: TRUE (DTR0 = 0)
1 - 1 - - - - - Enable Echo mode.
1 1 - - - - - - Enable UART receive.

 RETURNS:
 No arguments returned.

 ERRORS:
No meaningful errors.

 CAUTION:
The keyboard in the Mensch Computer configuration is driven by the common baud rate
generator (T4). The SELECT_COMMON_BAUD_RATE routine may be used to change the
baud rate for the printer and PC link ports, but it will also affect the keyboard port as well.

 110

_CONTROL_MODEM_PORT

 DESCRIPTION:
This subroutine allows the programmer to manipulate the supply voltage delivered to the
modem serial port connector, clear the I/O buffers and configure the characteristics if the port.
It does not select the word length, parity, or number of stop bits. These default to 8-bits, no
parity, and one stop bit. The modem port in the Mensch Computer configuration is driven by
an independent baud rate generator (T3). The SELECT_MODEM_BAUD_RATE routine may
be used to change the baud rate for the modem port, without affecting other serial ports.

 VECTOR:
 $00:8062 _CONTROL_MODEM_PORT

 EXPECTS:
Modem port configuration code in 8-bit register-A.

Bit
#7

Bit
#6

Bit
#5

Bit
#4

Bit
#3

Bit
#2

Bit
#1

Bit
#0 Meaning

- - - - - - - 0 No effect on port operation.
- - - - - - 0 - No effect on port operation.
- - - - - 0 - - No effect on port operation.
- - - - 0 - - - No effect on port operation.
- - - 0 - - - - No effect on port operation.
- - 0 - - - - - No effect on port operation.
- 0 - - - - - - No effect on port operation.
0 - - - - - - 1 No effect on port operation.
0 - - - - - 1 - Disable transmit interrupts.
0 - - - - 1 - - Disable XON/XOFF handshaking.
0 - - - 1 - - - Disable port power.
0 - - 1 - - - - Set DTR signal: FALSE (DTR2 = 1)
0 - 1 - - - - - Disable Echo mode.
0 1 - - - - - - Disable UART receive.
1 - - - - - - 1 Clear port input buffer.
1 - - - - - 1 - Clear port output buffer.
1 - - - - 1 - - Enable XON/XOFF handshaking.
1 - - - 1 - - - Enable port power.
1 - - 1 - - - - Set DTR signal: TRUE (DTR2 = 0)
1 - 1 - - - - - Enable Echo mode.
1 1 - - - - - - Enable UART receive.

 RETURNS:
 No arguments returned.

 ERRORS:
No meaningful errors.

 NOTE:
Any serial port on the W65C265S micro-controller may be driven by either of the baud rate
generators. The decision was made to allocate one baud rate source to the modem port and
share the other among the remaining ports in the Mensch Computer configuration. This was
based significantly upon the assumption that the keyboard, printer and PC link ports could be
preset and would probably remain constant. Likewise, it was assumed that the modem port
would frequently need to change its baud rate to accommodate external connections such as:
BBS systems and on-line services.

 111

_CONTROL_OUTPUT

 DESCRIPTION:
This subroutine sets up the output paths for PUT_CHR and other stream oriented subroutines.
It turns output stream ports ON & OFF.

 VECTOR:
 $00:80E0 _CONTROL_OUTPUT

 EXPECTS:
Control information in 8-bit register-A.

Bit
#7

Bit
#6

Bit
#5

Bit
#4

Bit
#3

Bit
#2

Bit
#1

Bit
#0 Meaning

- - - - - - - 0 Do not affect display output.
- - - - - - 0 - Do not affect printer port output.
- - - - - 0 - - Do not affect modem port output.
- - - - 0 - - - Do not affect PC port output.
0 - - - - - - 1 Disable display output.
0 - - - - - 1 - Disable printer port output.
0 - - - - 1 - - Disable modem port output.
0 - - - 1 - - - Disable PC port output.
1 - - - - - - 1 Enable display output.
1 - - - - - 1 - Enable printer port output.
1 - - - - 1 - - Enable modem port output.
1 - - - 1 - - - Enable PC port output.

 RETURNS:
 No arguments returned.

 ERRORS:
No meaningful errors.

 112

_CONTROL_PC_PORT

 DESCRIPTION:
This subroutine allows the programmer to manipulate the supply voltage delivered to the PC
link serial port connector, clear the I/O buffers and configure the characteristics if the port. It
does not select the word length, parity, or number of stop bits. These default to 8-bits, no
parity, and one stop bit.

 VECTOR:
 $00:811F _CONTROL_PC_PORT

 EXPECTS:
PC port configuration code in 8-bit register-A.

Bit
#7

Bit
#6

Bit
#5

Bit
#4

Bit
#3

Bit
#2

Bit
#1

Bit
#0 Meaning

- - - - - - - 0 No effect on port operation.
- - - - - - 0 - No effect on port operation.
- - - - - 0 - - No effect on port operation.
- - - - 0 - - - No effect on port operation.
- - - 0 - - - - No effect on port operation.
- - 0 - - - - - No effect on port operation.
- 0 - - - - - - No effect on port operation.
0 - - - - - - 1 No effect on port operation.
0 - - - - - 1 - Disable transmit interrupts.
0 - - - - 1 - - Disable XON/XOFF handshaking.
0 - - - 1 - - - Disable port power.
0 - - 1 - - - - Set DTR signal: FALSE (DTR3 = 1)
0 - 1 - - - - - Disable Echo mode.
0 1 - - - - - - Disable UART receive.
1 - - - - - - 1 Clear port input buffer.
1 - - - - - 1 - Clear port output buffer.
1 - - - - 1 - - Enable XON/XOFF handshaking.
1 - - - 1 - - - Enable port power.
1 - - 1 - - - - Set DTR signal: TRUE (DTR3 = 0)
1 - 1 - - - - - Enable Echo mode.
1 1 - - - - - - Enable UART receive.

 RETURNS:
 No arguments returned.

 ERRORS:
No meaningful errors.

(MORE)

 113

_CONTROL_PC_PORT (Continued)

 CAUTION:
The PC link port in the Mensch configuration is driven by the common baud rate generator
(T4). The SELECT_COMMON_BAUD_RATE routine may be used to change the baud rate
for the PC link port, but it will also affect the printer and the keyboard ports as well.

 NOTE:
Any serial port on the W65C265S micro-controller, including the PC link port, may be driven
by either of the baud rate generators. The decision was made to allocate one baud rate source
to the modem port and share the other among the remaining ports in the Mensch
configuration. This was based significantly upon the assumption that the keyboard, printer,
and PC link ports could be preset and would probably remain constant. Likewise, it was
assumed that the modem port would frequently need to change its baud rate to accommodate
external connections such as: BBS systems and on-line services. The PC link port may be
configured to share the same baud rate source as the modem port, but care should be taken to
avoid conflicts.

 114

_CONTROL_PRINTER_PORT

 DESCRIPTION:
This subroutine allows the programmer to manipulate the supply voltage delivered to the
printer serial port connector, clear the I/O buffers and configure the characteristics if the port.
It does not select the word length, parity, or number of stop bit. These default to 8-bits, no
parity, and one stop bit. The printer port in the Mensch configuration is driven by the
common baud rate generator (T4).

 VECTOR:
 $00:805F _CONTROL_PRINTER_PORT

 EXPECTS:
Printer port configuration code in 8-bit register-A.

Bit
#7

Bit
#6

Bit
#5

Bit
#4

Bit
#3

Bit
#2

Bit
#1

Bit
#0 Meaning

- - - - - - - 0 No effect on port operation.
- - - - - - 0 - No effect on port operation.
- - - - - 0 - - No effect on port operation.
- - - - 0 - - - No effect on port operation.
- - - 0 - - - - No effect on port operation.
- - 0 - - - - - No effect on port operation.
- 0 - - - - - - No effect on port operation.
0 - - - - - - 1 No effect on port operation.
0 - - - - - 1 - Disable transmit interrupts.
0 - - - - 1 - - Disable XON/XOFF handshaking.
0 - - - 1 - - - Disable port power.
0 - - 1 - - - - Set DTR signal: FALSE (DTR1 = 1)
0 - 1 - - - - - Disable Echo mode.
0 1 - - - - - - Disable UART receive.
1 - - - - - - 1 Clear port input buffer.
1 - - - - - 1 - Clear port output buffer.
1 - - - - 1 - - Enable XON/XOFF handshaking.
1 - - - 1 - - - Enable port power.
1 - - 1 - - - - Set DTR signal: TRUE (DTR1 = 0)
1 - 1 - - - - - Enable Echo mode.
1 1 - - - - - - Enable UART receive.

 RETURNS:
 No arguments returned.

 ERRORS:
No meaningful errors.

(MORE)

 115

_CONTROL_PRINTER_PORT (Continued)

 CAUTION:
The printer port in the Mensch configuration is driven by the common baud rate generator
(T4). The SELECT_COMMON_BAUD_RATE routine may be used to change the baud rate
for the printer port, but it will also affect the PC link and the keyboard ports as well.

 NOTE:
Any serial port on the W65C265S micro-controller, including the printer port, may be driven
by either of the baud rate generators. The decision was made to allocate one baud rate source
to the modem port and share the other among the remaining ports in the Mensch
configuration. This was based significantly upon the assumption that the keyboard, printer,
and PC link ports could be preset and would probably remain constant. Likewise, it was
assumed that the modem port would frequently need to change its baud rate to accommodate
external connections such as: BBS systems and on-line services. The printer port may be
configured to share the same baud rate source as the modem port, but care should be taken to
avoid conflicts.

 116

_DISP_LCD_HEADER

 DESCRIPTION:
This subroutine will display the “MENSCH COMPUTER” header on the top line of the LCD
screen. This may be useful to application programs building menus and formatted screens.
The header will appear as:

Figure 105
System Status Bar

Battery Condition: Normal (Charged)

 VECTOR:
 $00:80EF _DISP_LCD_HEADER

 EXPECTS:
No input arguments.

 RETURNS:
 No arguments returned.

 ERRORS:
No meaningful errors are detected.

 117

_DO_MAIN_MENU

 DESCRIPTION:
 This vector will transfer control to the MAIN MENU of the Mensch Operating System.

NOTE: This is an entry vector, not a
 subroutine. IT WILL NOT RETURN!

 VECTOR:
 $00:8107 _DO_MAIN_MENU

 EXPECTS:
Not Applicable.

 RETURNS:
 Not Applicable

 ERRORS:
 Not Applicable

_ENGAGE_LOW_POWER_MODE

 DESCRIPTION:
 This vector will force the system into low-power mode.

NOTE: This is an entry vector, not a
 subroutine. IT WILL NOT RETURN!

 VECTOR:
 $00:806E _ENGAGE_LOW_POWER_MODE

 EXPECTS:
No input arguments.

 RETURNS:
 This vector does not return.

 ERRORS:
 No meaningful errors.

_GET_A_PRINTER_BYTE (from printer port)

 DESCRIPTION:
This subroutine will read the next available byte from the printer serial port input buffer. If
the buffer is empty then the subroutine will return with the carry-bit set.

 VECTOR:
 $00:8041 _GET_A_PRINTER_BYTE

 EXPECTS:
No input arguments.

 RETURNS:
 Received byte from printer serial port in 8-bit register-A.

 ERRORS:
The carry-bit will return clear if a received data byte is available in 8-bit register-A. It will be
set if no received data was available.

 118

_GET_BIN_NUM

 DESCRIPTION:
This subroutine will examine an ASCII hexadecimal digit string in a specified buffer and
return the corresponding 16-bit binary number.

 VECTOR:
 $00:80E3 _GET_BIN_NUM

 EXPECTS:
Buffer address for ASCII data as: Bank in 8-bit register-A

 Offset in 16-bit register-X

 RETURNS:
 Normally returns with carry-bit clear, and the binary number in 16-bit register-X.

 ERRORS:
Exceptions return with carry-bit set, and explanation code in the 8-bit register-A. Codes are:

 $0D = no valid digits were received before an
ENTER key was detected.

 $1B = ESC (Escape) key was detected.

 $FF = Non-Hexadecimal characters were entered.

 NOTE:
This is a conversion subroutine which just examines data provided by the calling program. It
does not, itself, “get” anything or perform any kind of input operations.

_GET_CONTROLLER_DATA

 DESCRIPTION:
This subroutine will read the SEGA game controller and return data about the state of the
switches.

 VECTOR:
 $00:8068 _GET_CONTROLLER_DATA

 EXPECTS:
No input arguments.

 RETURNS:
 Returned byte in 8-bit register-A: Bit # Button

 7 = START

 6 = A

 5 = B

 4 = C

 3 = Right

 2 = Left

 1 = Down

 0 = Up
 ERRORS:

Normally returns with the carry-bit = clear. It will return with the carry-bit = set if the
controller port has been turned: OFF.

 119

_GET_KEYBOARD_CHARACTER

 DESCRIPTION:
This subroutine will read the next available byte from the keyboard serial port input buffer. If
the buffer is empty, then the subroutine will return with the carry-bit set.

 VECTOR:
 $00:8023 _GET_KEYBOARD_CHARACTER

 EXPECTS:
No input arguments.

 RETURNS:
 Received byte from keyboard serial port in 8-bit register-A.

 ERRORS:
The carry-bit will return clear if received data is available in 8-bit register-A. It will be set if
no received data was available.

_GET_MODEM_BYTE (from modem port)

 DESCRIPTION:
This subroutine will read the next available byte from the modem serial port input buffer. If
the buffer is empty, then the subroutine will return with the carry-bit set.

 VECTOR:
 $00:8050 _GET_MODEM_BYTE

 EXPECTS:
No input arguments.

 RETURNS:
 Received byte from modem serial port in 8-bit register-A.

 ERRORS:
The carry-bit will return clear if received data is available in 8-bit register-A. It will be set if
no received data was available.

 120

_GetGrStatus

 DESCRIPTION:
This subroutine will retrieve the current status of the color and fill attributes.

 VECTOR:
 $00:81BF _GetGrStatus

 EXPECTS:
No input arguments.

 RETURNS:
 Graphic status data returned in register-A:

Bit # Meaning
0 – LSB

1
2
3 Color: 0 = OFF 1 = ON
4
5
6

7 – MSB Fill: 0 = OFF 1 = ON
 ERRORS:

No meaningful errors.

_GetPoint

 DESCRIPTION:
This subroutine will read the current value of a specific graphic point on the LCD screen.

 VECTOR:
 $00:81BC _GetPoint

 EXPECTS:
Horizontal coordinate in register-X. If this value exceeds 239, then the returned point value
will be meaningless.

Vertical coordinate in register-Y. If this value exceeds 127, then the returned point value will
be meaningless.

 RETURNS:
 Point value returned in register-A: 0 = White

 NZ = Black

 ERRORS:
No errors reported, but invalid coordinates will yield invalid results.

 121

_HLine

 DESCRIPTION:
This subroutine will plot a horizontal line on the LCD screen in graphics mode.

 VECTOR:
 $00:819E _HLine

 EXPECTS:
Leftmost line origin coordinates in 16-bit register-X and 16-bit register-Y. Terminal
coordinate in 8-bit register-A. Lines are drawn from left to right.

If the coordinate in register-X exceeds 239, then a value of zero will be used instead.

If the coordinate in register-A exceeds 239, then a value of 239 will be used instead.

 RETURNS:
 No arguments returned in register.

 Normal operation returns with the carry-bit = clear.

 ERRORS:
If the coordinate is register-Y exceeds 127, then this subroutine will return with the carry-bit
= set and the line will not be drawn.

_INIT_DP_POINTER

 DESCRIPTION:
This subroutine maintains an internal stack of Direct Page values, for later recovery by the
_RESTORE_DP_POINTER subroutine. Upon entry, it saves the current DP register on this
internal stack. It then sets the DP register to the value received in register-X

 VECTOR:
 $00:8110 _INIT_DP_POINTER

 EXPECTS:
New direct page pointer value in 16-bit register-X.

 RETURNS:
 No arguments returned.

 ERRORS:
No errors detected.

 NOTE:
This subroutine performs no error checking. Its internal stack can only hold sixteen saved
values for the DP register. Attempts to store more than the maximum (16) will overflow this
stack and cause unpredictable results.

 122

_Line

 DESCRIPTION:
This subroutine will plot a line at any angle on the display in graphics mode.

 VECTOR:
 $00:8192 _Line

 EXPECTS:
The starting coordinates of the line must be in the most significant bytes of 16-bit register-X
and 16-bit register-Y. The ending coordinates of the line must be in the least significant bytes
of the same registers.

 RETURNS:
 No arguments returned.

 Normal operation returns with the carry-bit = clear.

 ERRORS:
If either coordinate in register-X exceeds 239 or either coordinate in register-Y exceeds 127
then this subroutine will return with the carry-bit = set and the line will not be drawn.

_OS_SHELL

 DESCRIPTION:
This is the normal entry vector to start the OS Shell program. This functions as a user
command interpreter for IC card operations. A list of available commands will be displayed
on the LCD screen in response to the “HELP” entry. Refer to the description of the MAIN
MENU option for: “RUN PCMCIA SHELL”. This provides an overview of how the OS
Shell program operates.

NOTE: This is an entry vector, not a
 subroutine. IT WILL NOT RETURN!

 VECTOR:
 $00:8077 _OS_SHELL

 EXPECTS:
 Not Applicable.

 RETURNS:
 Not Applicable.

 ERRORS:
 Not Applicable.

 123

_Point

 DESCRIPTION:
This subroutine will plot one point at specified coordinates on the display in graphics mode.

 VECTOR:
 $00:81A1 _Point

 EXPECTS:
Point coordinates in 16-bit register-X and 16-bit register-Y.

 RETURNS:
 No arguments returned.

 ERRORS:
No meaningful errors are detected.

 NOTES:
If the coordinate in register-X exceeds 239 or the coordinate in register-Y exceeds 127, then
this subroutine will not draw the point.

_PRINT_A_BYTE (Send via printer port)

 DESCRIPTION:
This subroutine will queue one byte from 8-bit register-A to be sent to the serial printer port.
The carry-bit will be set if the serial printer port cannot accept data, otherwise it will be clear
upon return.

 VECTOR:
 $00:803E _PRINT_A_BYTE

 EXPECTS:
 Output byte in 8-bit register-A.

 RETURNS:
 No arguments returned.

 ERRORS:
 Carry-bit (Clear = OK / Set = Serial printer port cannot accept data.)

_PtCode

 DESCRIPTION:
This subroutine will write an escape character (ESC = $1B) to the printer port followed by
whatever data is in 8-bit register-A.

 VECTOR:
 $00:81A4 _PtCode

 EXPECTS:
 ASCII character in 8-bit register-A.

 RETURNS:
 No arguments returned.

 ERRORS:
 No meaningful errors are detected.

 124

_PtLn

 DESCRIPTION:
This subroutine will write a carriage-return (CR = $0D) and linefeed (LF = $0A) sequence to
the printer port.

 VECTOR:
 $00:81A7 _PtLn

 EXPECTS:
 No input arguments.

 RETURNS:
 No argument returned.

 ERRORS:
 No meaningful errors are detected.

_PtScreen

 DESCRIPTION:
This subroutine will dump the contents of the LCD screen to the printer. The DUMP flags
may be configured to direct this dump to include either text or graphics or both. Refer to
descriptions of: _SetGraph, _SetGraphText, and _SetText for more information.

 VECTOR:
 $00:81AA _PtScreen

 EXPECTS:
 No input arguments.

 RETURNS:
 No argument returned.

 ERRORS:
 No meaningful errors are detected.

_RD_COUNT

 DESCRIPTION:
This subroutine may be used to check the current value of one of the five software timers.
The software timers are 16-bit variables which may be initialized via the _SET_COUNT
subroutine. The value in each timer will be decremented at regular (1/100th Sec.) intervals,
until it reaches zero.

 VECTOR:
 $00:8125 _RD_COUNT

 EXPECTS:
 Timer number (0-4) in register-A.

 RETURNS:
 The current 16-bit counter value is returned in register-Y.

 The state of the Zero-flag in the status register may be used to test the timer.

 Register-A and register-X are saved upon entry and resorted before returning.

 ERRORS:
 Carry-bit (Clear = OK / Set = Invalid Counter Number specified.)

 125

_RD_STPWTCH

 DESCRIPTION:
The STOPWATCH function may be used as an event timer. This subroutine will read the
current value of the STOPWATCH. The STOPWATCH is a 32-bit counter which counts up
at regular (1/100th Sec.) intervals. The STOPWATCH may be reset to zero via the
_CLR_STPWTCH subroutine.

 VECTOR:
 $00:812B _RD_STPWTCH

 EXPECTS:
 No input arguments.

 RETURNS:
 The 16-bit address (within Bank #0) of the 32-bit STOPWATCH counter in register-Y.

 ERRORS:
 No meaningful errors are detected.

_RESTORE_DP_POINTER

 DESCRIPTION:
This subroutine removes last saved value of DP Pointer from an internal stack and stores it
into the DP-Register. Pop’s (No safety!)

 VECTOR:
 $00:8113 _RESTORE_DP_POINTER

 EXPECTS:
 No input arguments.

 RETURNS:
 No argument returned.

 ERRORS:
 No meaningful errors are detected.

 NOTE:
This subroutine performs no error checking. It should only be used to recover values saved
by the _INIT_DP_POINTER subroutine. If no values have been saved, its internal stacks can
underflow. This could set the direct page (DP) register to a garbage value.

 126

_RETRIEVE_CONTROLLER_STATUS

 DESCRIPTION:
This subroutine will read the controller port.

 VECTOR:
 $00:8056 _RETRIEVE_CONTROLLER_STATUS

 EXPECTS:
 No input arguments.

 RETURNS:
 Controller status byte in 8-bit register-A, wherein:

Bit #7 (MSB) will be set (1) if the controller port has been disabled. Other bits will be
irrelevant when this occurs.

If Bit #7 returns clear (0) then the lower seven bits will be the actual data read from the
controller port.

 ERRORS:
 No meaningful errors.

 NOTES:
If the controller has been turned: OFF, then the other returned status bits will be misleading.
(Refer to the description of the CONTROL_CONTROLLER_PORT subroutine for more
information.)

_RETRIEVE_KEYBOARD_STATUS

 DESCRIPTION:
This subroutine will return the current status of the serial keyboard port.

 VECTOR:
 $00:8020 _RETRIEVE_KEYBOARD_STATUS

 EXPECTS:
 No input arguments.

 RETURNS:
 Keyboard port status byte in 8-bit register-A.

Bit # Meaning
0 - LSB Data in input buffer.

1 ESCape or ^C received.
2 XON/XOFF protocol mode.
3 Always zero (0).

4 DSR signal is TRUE
(DSR0=0).

5 Echo mode is enabled.
6 Input buffer has overflowed.

7 - MSB Output buffer has
overflowed.

 ERRORS:
 No meaningful errors.

 NOTES:
If the keyboard scanning has been turned: OFF, via the SEND_BYTE_TO_KEYBOARD
subroutine, then the returned status bits may be misleading.

 127

_RETRIEVE_MODEM_PORT_STATUS

 DESCRIPTION:
This subroutine will return the current status of the serial modem port.

 VECTOR:
 $00:8044 _RETRIEVE_MODEM_PORT_STATUS

 EXPECTS:
 No input arguments.

 RETURNS:
 Modem port status byte in 8-bit register-A.

Bit # Meaning
0 - LSB Data in input buffer.

1 ESCape or ^C received.
2 XON/XOFF protocol mode.
3 Port power is ON.

4 DSR signal is TRUE
(DSR2=0).

5 Echo mode is enabled.
6 Input buffer has overflowed.

7 - MSB Output buffer has
overflowed.

 ERRORS:
 No meaningful errors.

 NOTES:
If the modem port supply voltage has been turned: OFF, via the CONTROL_MODEM_PORT
subroutine, then the returned status bits may be misleading.

 128

_RETRIEVE_PC_PORT_STATUS

 DESCRIPTION:
This subroutine will return the current status of serial PC link port.

 VECTOR:
 $00:8053 _RETRIEVE_PC_PORT_STATUS

 EXPECTS:
 No input arguments.

 RETURNS:
 PC link port status byte in 8-bit register-A.

Bit # Meaning
0 - LSB Data in input buffer.

1 ESCape or ^C received.
2 XON/XOFF protocol mode.
3 Port power is ON.

4 DSR signal is TRUE
(DSR3=0).

5 Echo mode is enabled.
6 Input buffer has overflowed.

7 - MSB Output buffer has
overflowed.

 ERRORS:
 No meaningful errors.

 NOTES:
If the PC link port supply voltage has been turned: OFF, via the CONTROL_PC_PORT
subroutine, then the returned status bits may be misleading.

 129

_RETRIEVE_PRINTER_PORT_STATUS

 DESCRIPTION:
This subroutine will return the current status of the serial printer port.

 VECTOR:
 $00:803B _RETRIEVE_PRINTER_PORT_STATUS

 EXPECTS:
 No input arguments.

 RETURNS:
 Printer port status byte in 8-bit register-A.

Bit # Meaning
0 - LSB Data in input buffer.

1 ESCape or ^C received.
2 XON/XOFF protocol mode.
3 Port power is ON.

4 DSR signal is TRUE
(DSR1=0).

5 Echo mode is enabled.
6 Input buffer has overflowed.

7 - MSB Output buffer has
overflowed.

 ERRORS:
 No meaningful errors.

 NOTES:
If the printer port supply voltage has been turned: OFF, via the CONTROL_PRINTER_PORT
subroutine, then the returned status bits may be misleading.

 130

_SELECT_MODEM_BAUD_RATE (for modem port only)

 DESCRIPTION:
This subroutine will allow the program to reconfigure the baud rate generator which drives
the modem serial port.

 VECTOR:
 $00:8047 _SELECT_MODEM_BAUD_RATE

 EXPECTS::
 Baud rate selection code in 8-bit register-A

 0 = 110 Baud
 1 = 150 Baud
 2 = 300 Baud
 3 = 600 Baud
 4 = 1200 Baud
 5 = 1800 Baud
 6 = 2400 Baud
 7 = 4800 Baud
 8 = 9600 Baud
 9 = 14400 Baud
 A = 19200 Baud
 B = 38400 Baud
 C = 57600 Baud
 D = 115000 Baud

 RETURNS:
No arguments returned.

 ERRORS:
Carry-bit (Clear = OK / Set = Unacceptable selection code)

_SEND_A_MODEM_BYTE (Send via modem port)

 DESCRIPTION:
This subroutine will queue one byte from 8-bit register-A to be sent to the serial modem port.
The carry-bit will be set if the serial modem port cannot accept data, otherwise it will be clear
upon return.

 VECTOR:
 $00:804A _SEND_A_MODEM_BYTE

 EXPECTS:
 Output byte in 8-bit register-A.

 RETURNS:
 No argument returned.

 ERRORS:
 Carry-bit (Clear = OK / Set = Serial modem port cannot accept data.)

 131

_SEND_BEEP

 DESCRIPTION:
This subroutine will cause the speaker to beep.

 VECTOR:
 $00:8074 _SEND_BEEP

 EXPECTS:
 No input arguments.

 RETURNS:
 No argument returned.

 ERRORS:
 No meaningful errors.

_SEND_BYTE_TO KEYBOARD

 DESCRIPTION:
This subroutine will queue one byte from 8-bit register-A to be sent to the serial keyboard
port. The carry-bit will be set if the serial keyboard port cannot accept data, otherwise it will
clear upon return.

Refer elsewhere in this manual to Commanding The Keyboard for a description of how this
subroutine may be used.

 VECTOR:
 $00:8026 _SEND_BYTE_TO_KEYBOARD

 EXPECTS:
 Output byte in 8-bit register-A.

 RETURNS:
 No arguments returned.

 ERRORS:
 Carry-bit (Clear = OK / Set = Serial keyboard port cannot accept data.)

 132

_SEND_DTMF_DIGIT (Send via tone generators)

 DESCRIPTION:
This subroutine will use the tone generators: T5 and T6 gated to the speaker amplifier tot
produce DTMF combinations of 55 ms duration.

 VECTOR:
 $00:8071 _SEND_DTMF_DIGIT

 EXPECTS:
Output byte in 8-bit register-A, which must be the ASCII code corresponding to the desired
DTMF key:

Character Hex Code
Timer/Tone
Generator:

T5 (Hz)

Timer/Tone
Generator:

T6 (Hz)
0 $30 941 1336
1 $31 697 1209
2 $32 697 1336
3 $33 697 1477
4 $34 770 1209
5 $35 770 1336
6 $36 770 1477
7 $37 852 1209
8 $38 852 1336
9 $39 852 1477
A $41 697 1633
B $42 770 1633
C $43 852 1633
D $44 941 1633
$23 941 1477

Bell $07 800 1200
* $2A 941 1336

 RETURNS:
 No argument returned.

 ERRORS:
 Carry-bit (Clear = OK / Set = Unacceptable DTMF selection code.)

 133

_SEND_MODEM_STRING

 DESCRIPTION:
This subroutine will send a string of data or setup information to a HAYES-compatible
modem.

 VECTOR:
 $00:804D _SEND_MODEM_STRING

 EXPECTS:
 Long pointer to the string as follows:

 Bank address of string in 8-bit register-A.

 Offset address of string in 16-bit register-X.

The string must be terminated with either (1) a null character, or (2) the most significant bit of
the last character set.

 RETURNS:
No arguments returned, however a response will automatically be displayed on the LCD
screen if the modem has been configured to return result codes.

 ERRORS:
 Carry-bit (Clear = OK / Set = Command did not execute properly.)

_SET_COUNT

 DESCRIPTION:
This subroutine may be used to initialize one of the five software timers. The software timers
are 16-bit down-counters which may be read via the _RD_COUNT subroutine. The value in
each timer will be decremented at regular (1/100th Sec.) intervals, until it reaches zero.

 VECTOR:
 $00:8122 _SET_COUNT

 EXPECTS:
 Timer number (0 – 4) in register-A.

 Timeout value (Units = 1/100th Sec.) in 16-bit register-Y.

 RETURNS:
All registers are saved upon entry and restored before returning.

 ERRORS:
 Carry-bit (Clear = OK / Set = Invalid Counter Number specified.)

 134

_SetColor

 DESCRIPTION:
This subroutine will set the COLOR flag used by other graphics plotting subroutines. The
flag is used to determine whether pixel points should be plotted in white or black. (Clear =
White / Set = Black)

 VECTOR:
 $00:8186 _SetColor

 EXPECTS:
 No input arguments.

 RETURNS:
 No arguments returned.

 ERRORS:
 No meaningful errors are detected.

_SetFill

 DESCRIPTION:
This subroutine will set the FILL flag used by other graphics plotting subroutines. The flag is
used to determine whether or not plotting subroutines should fill the shapes when they draw
them.

(Set = Fill / Clear = No Fill)

 VECTOR:
 $00:818C _SetFill

 EXPECTS:
 No input arguments.

 RETURNS:
 No arguments returned.

 ERRORS:
 No meaningful errors are detected.

_SetGraph

 DESCRIPTION:
This subroutine will configure the DUMP flags used by _PtScreen such that the subroutine
will only dump the LCD graphics to the printer port.

 VECTOR:
 $00:81B0 _SetGraph

 EXPECTS:
 No input arguments.

 RETURNS:
 No arguments returned.

 ERRORS:
 No meaningful errors are detected.

 135

_SetGraphText

 DESCRIPTION:
This subroutine will configure the DUMP flags used by _PtScreen such that the subroutine
will dump both LCD text and graphics to the printer port.

 VECTOR:
 $00:81AD _SetGraphText

 EXPECTS:
 No input arguments.

 RETURNS:
 No arguments returned.

 ERRORS:
 No meaningful errors are detected.

_SetText

 DESCRIPTION:
This subroutine will configure the DUMP flags used by _PtScreen such that the subroutine
will only dump the LCD text to the printer port.

 VECTOR:
 $00:81B3 _SetText

 EXPECTS:
 No input arguments.

 RETURNS:
 No arguments returned.

 ERRORS:
 No meaningful errors are detected.

_START

 DESCRIPTION:
This is the normal restart point for the Mensch software. All previous setup conditions are
lost.

NOTE: This is an entry vector, not a
 subroutine. IT WILL NOT RETURN!

 VECTOR:
 $00:810A _START

 EXPECTS:
 Not Applicable.

 RETURNS:
 Not Applicable.

 ERRORS:
 Not Applicable.

 136

_TIME_DATE_CHK

 DESCRIPTION:
This subroutine will check and update the time and date on the first line of the display.

 VECTOR:
 $00:80EC _TIME_DATE_CHK

 EXPECTS:
 No input arguments.

 RETURNS:
 No arguments returned.

 ERRORS:
 No meaningful errors.

_VLine

 DESCRIPTION:
This subroutine will plot a vertical line on the LCD screen in graphics mode.

 VECTOR:
 $00:819B _VLine

 EXPECTS:
Line origin coordinates in 16-bit register-X and 16-bit register-Y. Terminal coordinate in 8-
bit register-A. Lines are drawn from top to bottom.

If the coordinate in register-Y exceeds 127 then a value of zero will be used.

If the coordinate in register-A exceeds 127 then a value of 127 will be used.

 RETURNS:
 No arguments returned in registers.

 Normal operation returns with the carry-bit = clear.

 ERRORS:
If the coordinate in register-X exceeds 239 then this subroutine will return with the carry-bit =
set, and the line will not be drawn.

_WrDec

 DESCRIPTION:
This subroutine will write a 16-bit unsigned integer as a positive number (0-65535) in ASCII
Decimal digits to the LCD screen.

 VECTOR:
 $00:8180 _WrDec

 EXPECTS:
Output value in 16-bit register-X

 RETURNS:
 No arguments returned in registers.

 ERRORS:
No meaningful errors are detected.

 137

Alter_Memory

 DESCRIPTION:
This is the subroutine invoked by typing the ‘M’ command at the monitor prompt. Basically,
Alter_Memory will request an address and accept input via the selected I/O streams.

The user must enter six ASCII-Hex digits to form a 24-bit address. The input format is:
BB:AAAA

Wherein: “BB” is the bank address. This subroutine will echo a ‘:’ after the 2-digit bank
address. “AAAA” is the offset address within the bank.

After a valid address has been entered, Alter_Memory prints a single line memory dump
starting at the specified address. It then prints a second line repeating the address and
positioning under the contents of the first location. The user may input new hexadecimal
character data, one byte at a time. This subroutine will automatically position under the next
location as values are entered.

Entering a SPACE ($20) character skips the current location, without changing it, and
positions on the next. The user may terminate this operation at anytime by typing ENTER
($0D).

NOTE: This subroutine would not normally be used by application
software on the W65C265. It has been included in this vector
table to support anticipated needs of the extended Mensch
Computer Operating System in that specific configuration.
Developers should consult Mensch Monitor Assembly
Listing for specific details regarding internal operation of this
subroutine in order to determine suitability for other
applications and configurations.

 VECTOR:
 $00:E000 Alter_Memory

 EXPECTS:
No input arguments. This is an interactive subroutine which requests parameters from the
user as needed.

 RETURNS:
 The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if any errors were detected.

 138

ASCBIN

 DESCRIPTION:
This subroutine will convert two ASCII HEX15 characters into a single binary byte. The
ASCII hexadecimal character in register-A corresponds to the least significant nibble of the
result. The most significant nibble is defined by the ASCII hexadecimal character in TEMP.
The resulting binary value will be returned in register-A. The carry-bit will be clear upon a
normal return from this subroutine. Refer to Mensch Monitor Assembly Listing for specific
details regarding the internal operation of the ASCBIN subroutine.

 VECTOR:
 $00:E087 ASCBIN

 EXPECTS:
The ASCII hexadecimal character in register-A corresponds to the least significant nibble of
the result.

The most significant nibble is defined by the ASCII hexadecimal character in the global
variable: TEMP ($00:0070).

 RETURNS:
 The resulting binary value will be returned in register-A.

 The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
 The carry-bit will be set if either parameter was not an ASCII HEX digit.

BACKSPACE

 DESCRIPTION:
This subroutine will output a BS (Backspace = $08) character to each of the selected output
streams. Refer to Mensch Monitor Assembly Listing for specific details regarding the
internal operation of the BACKSPACE subroutine.

 VECTOR:
 $00:E003 BACKSPACE

 EXPECTS:
No input arguments.

 RETURNS:
 The carry-bit will always be clear upon completion.

 ERRORS:
 No errors reported.

15 A valid ASCII hexadecimal digit is a numeric character: “0123456789” ($2F < char < $3A) or one
of the first six letters: “ABCDEF” ($40 < char < $47) in uppercase or lowercase: “abcdef” ($61 <
char < $7A).

 139

BIN2DEC

 DESCRIPTION:
This subroutine will take a binary value ($00-$63) in register-A and convert it to packed
decimal format ($00-$99) also in register-A. Values larger than 99 ($63) will not be properly
converted. Refer to Mensch Monitor Assembly Listing for specific details regarding the
internal operation of the BIN2DEC subroutine.

Example:

 LDA HOURS ; current HOURS (00-$17)
 JSL BIN2DEC ; make it decimal (00-$23)
 JSL SEND_HEX_OUT
 …

 VECTOR:
 $00:E08B BIN2DEC

 EXPECTS:
Binary value ($00-$63) in register-A.

 RETURNS:
 Equivalent value in packed decimal format ($00-$99) in register-A.

 Values larger than $63 will not be properly converted.

 The carry-bit will always be clear upon completion.

 ERRORS:
No errors reported. The BIN2DEC subroutine does not detect any errors or return error
codes. If the calling program passes a binary value larger than $63 to this subroutine, the
resulting conversion value will be meaningless.

BINASC

 DESCRIPTION:
This subroutine will convert an 8-bit binary value in register-A into two ASCII HEX
characters. Register-A returns the least significant character in ASCII. Temp+1 returns the
most significant character. Refer to Mensch Monitor Assembly Listing for specific details
regarding the internal operation of the BINASC subroutine.

 VECTOR:
 $00:E08F BINASC

 EXPECTS:
Binary value in 8-bit register-A.

 RETURNS:
 Least significant character in ASCII in Register-A.

 Most significant character in ASCII in the global variable: TEMP+1 ($00:0071).

 ERRORS:
 No errors reported.

 140

CHANGE_DIRECTORY (Reserved!)

 DESCRIPTION:
This vector currently invokes a non-functional “dummy” subroutine. It is reserved for
subdirectory operations in future versions of the Mensch Operating System.

 VECTOR:
 $00:80CE CHANGE_DIRECTORY

 EXPECTS:
Not Applicable.

 RETURNS:
Not Applicable.

 ERRORS:
Not Applicable.

CLEAR_LCD_DISPLAY (Entire text and/or graphics area)

 DESCRIPTION:
This subroutine will erase the entire LCD display area. It can selectively clear only the text or
graphics memory, or both, or neither.

 VECTOR:
 $00:802C CLEAR_LCD_DISPLAY

 EXPECTS:
Control code in 8-bit register-A:

 $00 = No clearing operation.

 $01 = Clear text display memory only.

 $02 = Clear graphics display memory only.

 $03 = Clear all LCD memory.

 Other = Invalid.

 RETURNS:
No arguments returned.

 ERRORS:
The carry-bit normally will return clear, but will be set if the control value in 8-bit register-A
was invalid.

 CAUTION:
It is not meaningful to call this subroutine if the supply voltage to the LCD display has been
disabled. (Refer to CONTROL_DISPLAY for more information.)

 NOTE:
Whenever the text display memory is cleared, the current text cursor position will be reset to:
line=0, column=0. Likewise, whenever the graphics display memory is cleared, the current
pixel coordinates will be reset to: row=0, column=0. In both cases, this corresponds to the
upper-left corner of the display.

 141

CLEAR_TO_END_OF_LINE (Text line)

 DESCRIPTION:
This subroutine will erase the LCD screen from the current text cursor position to the end of
the current text line. The text cursor will remain in its original position.

 VECTOR:
 $00:8032 CLEAR_TO_END_OF_LINE

 EXPECTS:
No input arguments.

 RETURNS:
No arguments returned, no registers changed.

 ERRORS:
No meaningful errors.

 CAUTION:
It is not meaningful to call this subroutine if the supply voltage to the LCD display has been
disabled. (Refer to CONTROL_DISPLAY for more information.)

CONTROL_SPEAKER_AMP

 DESCRIPTION:
This subroutine can turn the power to the speaker amplifier ON and OFF.

 VECTOR:
 $00:8104 CONTROL_SPEAKER_AMP

 EXPECTS:
Control value in 8-bit register-A:

 Zero = Disable amplifier supply voltage.

 Any

 Non-Zero = Enable power to amplifier.

 RETURNS:
No arguments returned.

 ERRORS:
No meaningful errors.

 142

CONTROL_TONES

 DESCRIPTION:
This subroutine will configure timers: T5 and T6, and gate either or both tone generators to
the audio outputs: TG0 and TG1. Configuration values for the timers may need to be
calculated for each implementation. The value necessary to produce specific tones are
dependent upon the frequency of the fast clock (FCLK) 16.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the CONTROL_TONES subroutine.

The speaker amplifier may be enabled/disabled independently. Programmers should use the
CONTROL_SPEAKER_AMP subroutine before calling this routine, to make certain that the
speaker amplifier output is enabled.

 VECTOR:
 $00:E009 CONTROL_TONES

 EXPECTS:
Control code in 8-bit register-A: 0 = Both tone generators disabled.
 1 = Tone generator TG0 is enabled.
 2 = Tone generator TG1 is enabled.
 3 = Both tone generators enabled.
 Other = Invalid.

Configuration value for timer: T5 in 16-bit register-X.

Configuration value for timer: T6 in 16-bit register-Y.

 RETURNS:
 No arguments returned.

 ERRORS:
The carry-bit normally will return clear, but will be set if the control code in 8-bit register-A
was invalid.

CREATE_DIRECTORY (Reserved!)

 DESCRIPTION:
This vector currently invokes a non-functional “dummy” subroutine. It is reserved for
subdirectory operations in future versions of the Mensch Operating System.

 VECTOR:
 $00:80C8 CREATE_DIRECTORY

 EXPECTS:
Not Applicable.

 RETURNS:
 Not Applicable.

 ERRORS:
 Not Applicable.

16 A thorough description of the algorithm is provided in: W65C265S INFORMATION
SPECIFICATION AND DATA SHEET. It also includes precalculated tables of value for typical
FCLK frequencies and commonly needed tones: DTMF, modems, ect. This document and related
literature is available from WDC.

 143

DIR_COMMD

 DESCRIPTION:
This subroutine outputs a file directory list on the LCD screen. If there are no files, then a
message will appear. If the list requires more than one screen, then any keypress will page to
the next screen.

 VECTOR:
 $00:80D4 DIR_COMMD

 EXPECTS:
Card specifier in 8-bit register-A: $00 = Low Card Slot
 $01 = High Card Slot

 RETURNS:
Normal operation of this subroutine will return with the carry-bit = clear, and no other
relevant arguments.

 ERRORS:
If errors or exceptions were detected by this subroutine, it will return with the carry-bit = set.
An error code for clarification will be returned in register-A. The error code may be
interpreted as follows:
 $01 = No card in slot
 $02 = Invalid card

DISP_LCD_STRING

 DESCRIPTION:
This subroutine will write a character string to the LCD display, at the current text cursor
position, if the text display has been enabled. The string must be terminated with either (1) a
null character, or (2) the most significant bit of the last character set.

Programmers should note that this subroutine should not be used unless they know where the
cursor is positioned. If the cursor coordinates are outside the display area, the string will not
appear. Refer to descriptions of the CLEAR_LCD_DISPLAY and
POSITION_TEXT_CURSOR subroutines for additional information.

 VECTOR:
 $00:8038 DISP_LCD_STRING

 EXPECTS:
Bank address of string in 8-bit register-A.

Pointer to string in 16-bit register-X.

 RETURNS:
 No arguments returned.

 ERRORS:
The carry-bit normally will return clear. There are no meaningful errors specific to this
subroutine, but it does call the WRITE_LCD_CHARACTER subroutine. Any errors detected
at that level will be passed back by this subroutine. (Refer to the description of the
WRITE_LCD_SUBROUTINE for more information.)

 144

DISPLAY_PCMCIA_ERROR

 DESCRIPTION:
This vector will display a PCMCIA error message on the LCD screen at the current text
cursor position.

 VECTOR:
 $00:8080 DISPLAY_PCMCIA_ERROR

 EXPECTS:
PCMCIA error code in 8-bit register-A. The error codes will be translated to text as follows:

Error Code Message Text
01H “NO CARD IN THAT SLOT”
02H “NOT A VALID CARD”
03H “CARD IS TOO BIG FOR SLOT”
04H “SLOT SPECIFIED NOT VALID”
09H “FORMAT COMPLETED”
10H “SPECIFIED CARD NOT LOGGED”
11H “SECTORS OUT OF RANGE”
12H “CARD IS WRITE PROTECTED”
13H “INVALID CARD FORMAT”
20H “FILE OPEN MODE IS INVALID”
21H “FILE NOT FOUND”
22H “MAX FILES ALREADY OPEN”
23H “FILE SIZE WAS ZERO”
24H “END OF FILE REACHED”
30H “FILE OPENED AS READ ONLY”

All Other “UNDEFINED PC CARD ERROR”

 RETURNS:
 No arguments returned.

 ERRORS:
No errors detected or reported.

 145

DO_LOW_POWER_PGM

 DESCRIPTION:
This vector will force the system into low-power mode. Basically, this involves the following
steps:

1. Reset the stack pointer to $00:01FF.

2. Turn OFF all I/O.

3. Shut down all chip selects.

4. Perform low power mode maintenance loop.

 Service interrupts from timer #1, 1/second.
 Update time-of-day clock/calendar and alarm.

 Execute User Check Program subroutine located at: $00:01C0.

Step #4 will repeat, keeping the W65C265 in low power mode. This will continue until one of
the following events:

 System RESET occurs.

 The Alarm function times out.

The User Check Program subroutine initiates exit from low
power mode to begin normal operation again.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of low power mode.

NOTE: This is an entry vector, not a subroutine.
IT WILL NOT RETURN!

 VECTOR:
 $00:E00C DO_LOW_POWER_PGM

 EXPECTS:
Not Applicable.

 RETURNS:
 Not Applicable.

 ERRORS:
 Not Applicable.

 146

Dump_1_line_to_Output

 DESCRIPTION:
This subroutine will request the starting address via the selected output streams and accept
responses via any of the selected input streams.

The user must enter six ASCII-Hex digits to form each 24-bit address. The input format is:

 BB:AAAA

Wherein: “BB” is the bank address. This subroutine will echo a ‘:’ after the 2-digit bank
address. “AAAA” is the offset address within the bank.

After valid addresses have been entered, Dump_1_line_to_Output will write a formatted
header and one line, sixteen bytes, of memory dump data to each of the selected output
streams.

NOTE: This subroutine would not normally be used by
application software on the W65C265. It has been
included in this vector table to support anticipated
needs of the extended Mensch Computer Operating
System in that specific configuration. Developers
should consult Mensch Monitor Assembly Listing
for specific details regarding internal operation of
this subroutine in order to determine suitability for
other applications and configurations.

 VECTOR:
 $00:E015 Dump_1_line_to_Output

 EXPECTS:
No input arguments. This is an interactive subroutine which requests parameters from the
user as needed.

 RETURNS:
 The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if invalid address data was entered.

 147

Dump_1_line_to_Screen

 DESCRIPTION:
This subroutine will request the starting address and accept input via any of the selected input
streams.

The user must enter six ASCII-Hex digits to form each 24-bit address. The input format is:

 BB:AAAA

Wherein: “BB” is the bank address. This subroutine will echo a ‘:’ after the 2-digit bank
address. “AAAA” is the offset address within the bank.

After valid addresses have been entered, Dump_1_line_to_Screen will write a formatted
header and two lines of eight bytes of memory dump data to each of the selected output
streams.

NOTE: This subroutine would not normally be used by
application software on the W65C265. It has been
included in this vector table to support anticipated
needs of the extended Mensch Computer Operating
System in that specific configuration. Developers
should consult Mensch Monitor Assembly Listing
for specific details regarding internal operation of
this subroutine in order to determine suitability for
other applications and configurations.

 VECTOR:
 $00:E018 Dump_1_line_to_Screen

 EXPECTS:
No input arguments. This is an interactive subroutine which requests parameters from the
user as needed.

 RETURNS:
 The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if invalid address data was entered.

 NOTE:
The name of this subroutine may be confusing to some readers. It may help to remember
dump operations always begin with a header, and that one dump line always includes sixteen
bytes from its starting address. When dumping to the 40-column LCD screen, this data must
be reformatted as a header and two display lines. This is a generic output subroutine which
will dump in display line format to all active output streams, even if the actual LCD display
has been disabled.

 148

Dump_It

 DESCRIPTION:
This subroutine will perform a memory dump operation to all selected output streams. The
memory range and dump configuration must be provided by the caller. It performs no error
checking, as it assumes validation will be performed before parameters are passed. Refer to
Mensch Monitor Assembly Listing for specific details regarding the internal operation of
the Dump_It subroutine

NOTE: This subroutine would not normally be used by
application software on the W65C265. It has been
included in this vector table to support anticipated
needs of the extended Mensch Computer Operating
System in that specific configuration. Developers
should consult Mensch Monitor Assembly Listing
for specific details regarding internal operation of
this subroutine in order to determine suitability for
other applications and configurations.

 VECTOR:
 $00:E027 Dump_It

 EXPECTS:
Dump configuration parameter in 8-bit register-A.

Least significant bit: #0 = Output S28 + byte-count.
 1 = Format for LCD (40 char/line).

Note: Some possible 2 = Add spaces between data bytes & HEADER.
combinations 3 = Add checksum.
are invalid or 4 = 8 bytes not 16 bytes per line.

unpredictable! 5 = ONE LINE ONLY. (Not Used by: Dump-It)
 6 = ASCII not Hex data.
Most significant bit: #7 = (Not Used.)

Non-zero number of dump data lines per page in 16-bit register-X. (Note: A header may also
be printed.)

The 3-byte starting address must be loaded into the global variable: TMP0 ($00:005D),
TMP0+1, and TMP0+2. The least significant byte (LSB) of the 3-byte address must reside
in TMP0 and the MSB must be in TMP0+2.

The 3-byt ending address must be locked into the global variable: TMP2 ($00:0063),
TMP2+1, and TMP2+2. The least significant byte (LSB) of the 3-byte address must reside
in TMP2 and the MSB must be in TMP2+2.

 RETURNS:
 No arguments returned.

 ERRORS:
No meaningful errors are detected or reported.

 149

Dump_to_Output

 DESCRIPTION:
This subroutine will request the starting and ending addresses and accept input via any of the
selected input streams.

The user must enter six ASCII-Hex digits to form each 24-bit address. The input format is:

 BB:AAAA

Wherein: “BB” is the bank address. This subroutine will echo a ‘:’ after the 2-digit bank
address. “AAAA” is the offset address within the bank.

After valid addresses have been entered, Dump_to_Output will write a Form-Feed ($0C)
and formatted header line to each of the selected output streams. This will be followed by up
to sixty lines, of sixteen bytes each, of memory dump data. If the range of memory requires
more than sixty lines of dump data, then another from-feed/header will be generated before
more dump data is sent. This cycle will repeat until the entire specified block of memory has
been dumped.

NOTE: This subroutine would not normally be used by
application software on the W65C265. It has been
included in this vector table to support anticipated
needs of the extended Mensch Computer Operating
System in that specific configuration. Developers
should consult Mensch Monitor Assembly Listing
for specific details regarding internal operation of
this subroutine in order to determine suitability for
other applications and configurations.

 VECTOR:
 $00:E01B Dump_to_Output

 EXPECTS:
No input arguments. This is an interactive subroutine which requests parameters from the
user as needed.

 RETURNS:
 The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if invalid address data was entered.

 150

Dump_to_Printer

 DESCRIPTION:
This subroutine will request the starting and ending addresses and accept input via the
selected I/O streams.

The user must enter six ASCII-Hex digits to form each 24-bit address. The input format is:

 BB:AAAA

Wherein: “BB” is the bank address. This subroutine will echo a ‘:’ after the 2-digit bank
address. “AAAA” is the offset address within the bank.

After valid addresses have been entered, Dump_to_Printer will write a Form-Feed ($0C)
and formatted header line each of the selected output streams. This will be followed by up to
sixty lines, of sixteen bytes each, of memory dump data. If the range of memory requires
more than sixty lines of dump data, then another form-feed/header will be generated before
more dump data is sent. This cycle will repeat until the entire specified block of memory has
been dumped.

NOTE: This subroutine would not normally be used by
application software on the W65C265. It has been
included in this vector table to support anticipated
needs of the extended Mensch Computer Operating
System in that specific configuration. Developers
should consult Mensch Monitor Assembly Listing
for specific details regarding internal operation of
this subroutine in order to determine suitability for
other applications and configurations.

 VECTOR:
 $00:E01E Dump_to_Printer

 EXPECTS:
No input arguments. This is an interactive subroutine which requests parameters from the
user as needed.

 RETURNS:
 The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if invalid address data was entered.

 151

Dump_to_Screen

 DESCRIPTION:
This subroutine will request the starting and ending addresses and accept input via the
selected I/O streams.

The user must enter six ASCII-Hex digits to form the 24-bit address. The input format is:

 BB:AAAA

Wherein: “BB” is the bank address. This subroutine will echo a ‘:’ after the 2-digit bank
address. “AAAA” is the offset address within the bank.

After valid addresses have been entered, Dump_to_Screen will write a formatted header line
to each of the selected output streams. This will be followed by up to twelve lines, of eight
bytes each, of memory dump data. If the range of memory requires more than twelve lines of
dump data, then the Dump_to_Screen subroutine will pause for input from any selected input
streams. The user may enter any character to acknowledge this pause. Another header will
be generated before more dump data is sent. This cycle will repeat until the entire specified
block of memory has been dumped.

NOTE: This subroutine would not normally be used by
application software on the W65C265. It has been
included in this vector table to support anticipated
needs of the extended Mensch Computer Operating
System in that specific configuration. Developers
should consult Mensch Monitor Assembly Listing
for specific details regarding internal operation of
this subroutine in order to determine suitability for
other applications and configurations.

 VECTOR:
 $00:E021 Dump_to_Screen

 EXPECTS:
No input arguments. This is an interactive subroutine which requests parameters from the
user as needed.

 RETURNS:
 The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if invalid address data was entered.

 152

Dump_to_Screen_ASCII

 DESCRIPTION:
This subroutine will request the starting and ending addresses and accept input via the
selected I/O streams.

The user must enter six ASCII-Hex digits to form the 24-bit address. The input format is:

 BB:AAAA

Wherein: “BB” is the bank address. This subroutine will echo a ‘:’ after the 2-digit bank
address. “AAAA” is the offset address within the bank.

After valid addresses have been entered, Dump_to_Screen_ASCII will write up to twelve
lines, of sixteen bytes each, of ASCII dump data. Values which do not translate to pintable
ASCII characters will appear as an apostrophe (‘). If the range of memory requires more than
twelve lines of dump data, then the Dump_to_Screen_ASCII subroutine will pause for input
from any selected input stream. The user may enter any character to acknowledge this pause.
Up to twelve more lines of dump data will be sent. This cycle will repeat until the entire
specified block of memory has been dumped.

The final dump will be followed by a pause. Again, the user may enter any character to
acknowledge this pause.

NOTE: This subroutine would not normally be used by
application software on the W65C265. It has been
included in this vector table to support anticipated
needs of the extended Mensch Computer Operating
System in that specific configuration. Developers
should consult Mensch Monitor Assembly Listing
for specific details regarding internal operation of
this subroutine in order to determine suitability for
other applications and configurations.

 VECTOR:
 $00:E024 Dump_to_Screen_ASCII

 EXPECTS:
No input arguments. This is an interactive subroutine which requests parameters from the
user as needed.

 RETURNS:
 The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if invalid address data was entered.

 153

DUMPREGS

 DESCRIPTION:
This is the subroutine invoked by typing the ‘R’ command at the monitor prompt. Basically,
DUMPREGS will write a formatted display of the register values as they were saved at the
most recent monitor prompt. These values were used to initialize the registers prior to the
monitor releasing control. This output will be sent to each of the selected output streams.

NOTE: This subroutine would not normally be used by
application software on the W65C265. It has been
included in this vector table to support anticipated
needs of the extended Mensch Computer Operating
System in that specific configuration. Developers
should consult Mensch Monitor Assembly Listing
for specific details regarding internal operation of
this subroutine in order to determine suitability for
other applications and configurations.

 VECTOR:
 $00:E00F DUMPREGS

 EXPECTS:
No input arguments. This is an interactive subroutine which requests parameters from the
user as needed.

 RETURNS:
 The carry-bit will be clear upon completion.

 ERRORS:
No errors reported.

 154

DumpS28

 DESCRIPTION:
This is the subroutine invoked by typing the ‘W’ command at the monitor prompt. Basically,
DumpS28 will request lowest and highest addresses via each selected input stream. Then, it
will dump the specified memory block in S28 loader format to all selected output streams.
The last record written will begin with “S8”, indicating that none follow.

 S2LLHHMMLWDDDDDDDD…CC
S2 = literally the ASCII characters: “S2”,
LL = length of the data + 4,
HH = high byte of the address,

S28 Format:
where:

MM = middle byte of the address,
 LW = low byte of the address,
 DD = one byte of data, next byte, ect
 CC = checksum (1’s complement of the sum of the length,
 address, and data bytes.)

 The user must enter six ASCII-Hex digits to form each 24-bit address. The input format is:

 BB:AAAA

Wherein: “BB” is the bank address. This subroutine will echo a ‘:’ after the 2-digit bank
address. “AAAA” is the offset address within the bank.

After valid addresses have been entered, DumpS28 will write S28 records for the entire
memory block. If the lowest address is greater than the highest address, then only one sixteen
byte record will be dumped. It will begin with the specified lowest address.

Note: This subroutine would not normally be used by application software
on the W65C265. It has been included in this vector table to support
anticipated needs of the extended Mensch Computer Operating
System in that specific configuration. Developers should consult
Mensch Monitor Assembly Listing for specific details regarding
internal operations of this subroutine in order to determine suitability
for other applications and configurations.

 VECTOR:
 $00:E012 DumpS28

 EXPECTS:
No input arguments. This is an interactive subroutine which requests parameters from the
user as needed.

 RETURNS:
 The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if invalid address data was entered.

 155

FCLOSE

 DESCRIPTION:
This routine Closes the specified file in the PCMCIA Dos-compatible file emulation. If the
specified file was not open, the subroutine will just return normally, without problems.

 VECTOR:
 $00:8092 FCLOSE

 EXPECTS:
Register-A = File Handle of File to be Closed.

 RETURNS:
 If File Was Closed: Carry Bit = Clear.

Note: Since the result will always be a closed file, the carry-bit will always
return clear.

 ERRORS:
No meaningful errors returned.

FDELETE

 DESCRIPTION:
This routine Deletes the specified file from the card.

 VECTOR:
 $00:80C2 FDELETE

 EXPECTS:
Register-X: Address of Filename Information
 Register-A: Bank Code of Filename Information

 RETURNS:
If File is Deleted:
 Carry Bit = Clear

 ERRORS:
Else, Carry Bit = Set
 Register-A = Error Code:
 $01 = No Card Found in Specified Slot.
 $21 = File Not Found

 156

FGETBLOCK

 DESCRIPTION:
This routine reads a specific number of bytes from the specified file and stores the byte in a
specified storage area.

 VECTOR:
 $00:80B3 FGETBLOCK

 EXPECTS:
All parameters to this routine must be passed on the stack.
 SP+4: File Handle of file.
 SP+5: Address of Storage Location (24 bits).
 SP+7: Length of Block to Read

Note: It is the responsibility of the Calling routine to restore the stack pointer upon
return from this function.

 RETURNS:
If Block read successfully:
 Carry Bit = Clear

 ERRORS:
Else, Carry Bit = Set
 Register-A = Error Code:
 $24 = End of File reached during read..

FGETC

 DESCRIPTION:
This routine Reads a single byte from the specified file.

 VECTOR:
 $00:80AA FGETC

 EXPECTS:
 Register-Y: File handles to read from.

 RETURNS:
If byte read successfully:
 Carry Bit = Clear
 Register-A = Byte Just Read

 ERRORS:
Else, Carry Bit = Set
 Register-A = Error Code:
 $24 = End of File reached

 157

FGETS

 DESCRIPTION:
This routine reads a string of data from the specified file. Routine will continue reading from
the file until a byte of $00 or EOF is found.

 VECTOR:
 $00:80B0 FGETS

 EXPECTS:
Register-Y: File Handle to Read From

 Register-X: Address to String Storage Location
 Register-A: Bank Address of String Storage Location

 RETURNS:
If String is Read successfully:
 Carry Bit = Clear

 ERRORS:
Else, Carry Bit = Set
 Register-A = Error Code:
 $24 = End of File reached

FGETW

 DESCRIPTION:
This routine reads a Word of data from the specified file.

 VECTOR:
 $00:80AD FGETW

 EXPECTS:
 Register-Y: File Handle to read from.

 RETURNS:
If Word is read successfully:
 Carry Bit = Clear
 Register-X = Word just read from file.

 ERRORS:
Else, Carry Bit = Set
 Register-A = Error Code:
 $24 = End of File reached

FILELENGTH

 DESCRIPTION:
This routine returns the current size of the specified file.

 VECTOR:
 $00:80BC FILELENGTH

 EXPECTS:
 Register-A: File Handle of File to test.

 RETURNS:
 Register-X: Low word of File Length
 Register-Y: High word of File Length

 ERRORS:
No meaningful errors returned.

 158

FILL_Memory

 DESCRIPTION:
This is the subroutine invoked by typing the ‘F’ command at the monitor prompt. Basically,
FILL_Memory will request starting and ending addresses, and a fill constant via all selected
output streams. It will accept responses from any selected input streams.

The user must enter six ASCII-Hex digits to form each 24-bit address. The input format is:

 BB:AAAA

Wherein: “BB” is the bank address. This subroutine will echo a ‘:’ after the 2-digit bank
address. “AAAA” is the offset address within the bank.

After a valid addresses have been entered, FILL_Memory will expect a fill constant as two
hexadecimal characters. It will then write the fill constant value to every location in the
specified memory block.

Note: This subroutine would not normally be used by application software on
the W65C265. It has been included in this vector table to support
anticipated needs of the extended Mensch Computer Operating System
in that specific configuration. Developers should consult Mensch
Monitor Assembly Listing for specific details regarding internal
operation of this subroutine in order to determine suitability for other
applications and configurations.

 VECTOR:
 $00:E02A FILL_Memory

 EXPECTS:
No input arguments. This is an interactive subroutine which requests parameters from the
user as needed.

 RETURNS:
 The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if any errors were detected.

 159

FINDFIRST

 DESCRIPTION:
This routine searches for a filename on a PCMCIA card. The filename must have been split
up by FNSPLIT prior to calling this routine.

 VECTOR:
 $00:80B9 FINDFIRST

 EXPECTS:
 Register-X: Address of File Data Structure (FDS).
 Register-A: Bank Code of File Data Structure (FDS).

 RETURNS:
 If file is found:
 Carry Bit = Clear
 Register-X = Address of Directory Entry for File
 Register-A = Bank Code of Directory Entry.

 ERRORS:
Else, Carry Bit = Set
 Register-A = Error Code:
 $21 = No File Found

FNSPLIT

 DESCRIPTION:
This routine takes a string input and breaks it up into the separate pieces of a filename
including card slot, path string, filename, and extension.

 VECTOR:
 $00:80B6 FNSPLIT

 EXPECTS:
 Pointer (24-bits) to file name string to be parsed:

 Bank of filename string in 8-bit register-A.
 Offset address of filename string in 16-bit register-X.

 Offset pointer (in Bank #0) to store the parts in 16-bit register-Y.

 RETURNS:
Filename data is separated and stored in file structure table for use by other PCMCIA
routines.

 ERRORS:

No meaningful errors returned.

 NOTE:
 The file name string should have one of the following formats:

 LO:name.extension
 or
 HI:name.extension

 Wherein: name.extension represent a valid MS-DOS file name17.

17 Future versions of the Mensch Operating System will allow multiple levels of directories and will
provide complete pathname support.

 160

FOPEN

 DESCRIPTION:
This routine Opens the given file on the specified PCMCIA card.

 VECTOR:
 $00:808F FOPEN

 EXPECTS:
 Register-X = Address of Path String in Memory
 Register-A = Bank address of Path String in Memory
 Register-Y = File Open Code:

 ‘r’: Open file in read-only mode.
 ‘w’: Open File for writing. Overwrite existing file.
 ‘a’: Open file for append, or create new file.
 ‘R’: Open file for updating (Read and Write).
 ‘W’: Create file in update mode (Read and Write).
 ‘A’: Open file for append, or create new file.

 RETURNS:
 If File was successfully opened:
 Carry Bit = Clear
 Register-A = File Handle for subsequent usage

 ERRORS:
Carry Bit = Set

Register-A = Error Code:
 $01 = No Card Found in the Slot.
 $02 = Boot Sector on Card is Invalid.
 $13 = Invalid File Access Table (FAT).
 $20 = Invalid Open mode.
 $21 = File no found for Read Mode.
 $22 = Too many files open to open this file.

FORMAT

 DESCRIPTION:
This routine formats a PCMCIA RAM Card installed in the specified PCMCIA slot. The
format used is standard MSDOS format.

 VECTOR:
 $00:807A FORMAT

 EXPECTS:
 Register-A: PCMCIA Slot Code: $00 = Low Card Slot

 $01 = High Card Slot

 RETURNS:
 If RAM Card formatted properly:
 Register-A = Number of 64K Banks on Card
 Carry Bit = Clear

 ERRORS:
If Card not formatted
 Carry Bit = Set
 Register-A = Error Code:
 $01 = No Card Found in the specified slot.
 $03 = Card is to big for the specified slot.

 161

FPUTBLOCK

 DESCRIPTION:
Writes a specific number of bytes into the specified file.

 VECTOR:
 $00:80A7 FPUTBLOCK

 EXPECTS:
 All parameters to this routine must be passed on the stack:

SP+4 = File Handle to write to.
SP+5 = Source Address (16 bits).
SP+7 = Bank Address of Source (8 bits).
SP+8 = Length to write (16 bits).

It is the responsibility of the calling routine to restore the stack pointer after this routine
returns.

 RETURNS:
 If Block was written successfully:
 Carry Bit = Clear

 ERRORS:
Else, Carry Bit = Set
 Register-A = Error Code:
 $30 = File opened in Read-Only mode.

FPUTC

 DESCRIPTION:
This routine writes a single byte to the specified file.

 VECTOR:
 $00:809E FPUTC

 EXPECTS:
 Register-A = Byte to be written into file.

 Register-Y = File Handle of open file to write to.

This routine assumes that a file has been previously opened and will NOT check for an open
file.

 RETURNS:
 If byte was written:
 Carry Bit = Clear

 ERRORS:
Else, Carry Bit = Set
 Register-A = Error Code:
 $30 = File is open as Read-Only

 162

FPUTS

 DESCRIPTION:
This routine writes a String of Bytes to the specified file. The string must be terminated by a
$00 byte.

 VECTOR:
 $00:80A4 FPUTS

 EXPECTS:
 Register-Y: File Handle of Opened File.

 Register-X: Address of String in memory.

Register-A: Bank Address of String.

 RETURNS:
 If string is written successfully:
 Carry Bit = Clear

 ERRORS:
Else, Carry Bit = Set
 Register-A = Error Code:
 $30 = File open in Read-Only mode.

FPUTW

 DESCRIPTION:
This routine Write a Word (16 bits) of data to the specified file.

 VECTOR:
 $00:80A1 FPUTW

 EXPECTS:
 Register-X: Word to be written into file.

 Register-Y: File Handle of file to be written to.

 RETURNS:
 If word was written successfully:
 Carry Bit = Clear

 ERRORS:
Else, Carry Bit = Set
 Register-A = Error Code:
 $30 = File was opened in Read-Only mode.

 163

FSEEK

 DESCRIPTION:
This routine moves the file pointer to the specific location within the specified file.

 VECTOR:
 $00:8098 FSEEK

 EXPECTS:
 File Handle in 8-bit register-A.

 Desired byte location in file as 32-bit offset:

 Low word of position to seek to in 16-bit register-X.

 High word of position to seek to in 16-bit register-Y.

 RETURNS:
 No output arguments.

 ERRORS:
No meaningful errors returned.

 NOTE:
Internally, F_NEXT_ADDRESS ($00:102B) will point to the current address within the
specified file. This pointer will be used by: FGETC, FGETW, FGETB, and other subroutines
when accessing the file.

 164

GET_3BYTE_ADDR

 DESCRIPTION:
This subroutine accepts six ASCII-Hex digits, from the input streams selected by the
CONTROL_INPU, to form a 24-bit address.

The input format is: BB:AAAA

Wherein: “BB” is the bank address. This subroutine will echo a ‘:’ after the 2-digit bank
address, to all output streams enabled by CONTORL_OUTPUT. “AAAA” is the offset
address within the bank.

Refer to the description of CONTROL_INPUT for details about configuring input stream and
selecting input sources.

Refer to the description of CONTROL_OUTPUT for details about configuring the output
streams.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the GET_3BYTE_ADDR subroutine.

 VECTOR:
 $00:E02D GET_3BYTE_ADDR

 EXPECTS:
 No input arguments.

 RETURNS:
 No output arguments.

The 3-byte result is returned in the global variables: TMP2 ($00:0063), TMP2+1, and
TMP2+2. The bytes are ordered such that: TMP2=LSB and TMP2+2=MSB.

The subroutine will return with the carry-bit=clear if a proper 6-digit address has been
received.

 ERRORS:
The carry-bit will be returned set if any non-digit character is detected before all six ASCII-
Hex digits have been received.

 165

Get_Address

 DESCRIPTION:
This subroutine will write the following string to all selected output streams:

 “Enter Address: BB:AAAA”

IT then performs: GET_3BYTE_ADDR which accepts six ASCII-Hex digits, from any
selected input stream, to form a 24-bit address.

The input format is:
 BB:AAAA

Wherein: “BB” is the bank address. This subroutine will echo a ‘:’ after the 2-digit address,
to each of the selected output streams. “AAAA” is the offset address within the bank.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the Get_Address subroutine.

 VECTOR:
 $00:E042 Get_Address

 EXPECTS:
 No input arguments.

 RETURNS:
 No output arguments.

The 3-byte result is returned in the global variables: TMP2 ($00:0063), TMP2+1, and
TMP2+2. The bytes are ordered such that: TMP2=LSB and TMP2+2=MSB.

The subroutine will return with the carry-bit=clear if a proper 6-digit address has been
received.

 ERRORS:
The carry-bit will be returned set if any non-digit character is detected before all six ASCII-
Hex digits have been received.

 166

GET_ALARM_STATUS

 DESCRIPTION:
This subroutine will retrieve the current status of the system alarm. Refer to Mensch
Monitor Assembly Listing for specific details regarding the internal operation of the
GET_ALARM_STATUS subroutine.

 EXPECTS:
 No input arguments.

 RETURNS:
 Alarm status returned in 8-bit register-A:

Zero = Alarm has not been set.

Any
 Non-Zero = Alarm has been set.

The carry-bit will be set if the alarm has been triggered, otherwise it will be clear upon return.

 ERRORS:
No meaningful errors.

 NOTE:
Calling this subroutine will also automatically reset the alarm, if it has been triggered. Non-
destructive testing may be accomplished by accessing the alarm flag directly from page #0.
(Refer to the source code listing for specific details.)

GET_BYTE_FROM_PC

 DESCRIPTION:
This subroutine will read the next available byte from the PC link serial port #3 input buffer.
If the buffer is empty, then the subroutine will return with the carry-bit set. Refer to Mensch
Monitor Assembly Listing for specific details regarding the internal operation of the
GET_BYTE_FROM_PC subroutine.

 VECTOR:
 $00:E033 GET_BYTE_FROM_PC

 EXPECTS:
 No input arguments.

 RETURNS:
Received byte from PC link serial port in 8-bit register-A.

 ERRORS:
The carry-bit will return clear if a received data byte is available in 8-bit register-A. It will be
set if no received data was available.

 167

GET_CHR

 DESCRIPTION:
This subroutine will get a single character from the selected INPUT streams. IT will sample
the selected input sources and returns the first character detected.

Refer to the description of CONTROL_INPUT for details about configuring the input stream
and selecting input sources.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the GET_CHR subroutine.

 VECTOR:
 $00:8036 GET_CHR

 EXPECTS:
 No input arguments.

 RETURNS:
Normally returns with carry-bit clear, and received character in 8-bit register-A. All other
registers are saved upon entry and restored before returning.

 ERRORS:
Exception returns carry-bit set if no input sources are enabled. No other meaningful errors are
detected.

 168

Get_E_Address

 DESCRIPTION:
This subroutine writes the following prompt string to all selected output streams:

 “Enter Highest Address: BB:AAAA”

It then performs: GET_3BYTE_ADDR which accepts six ASCII-Hex digits, from any
selected input stream, to form a 24-bit address.

The input format is:
 BB:AAAA

Wherein: “BB” is the bank address. This subroutine will echo a ‘:’ after the 2-digit bank
address, to each of the selected output stream. “AAAA” is the offset address within the bank.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the Get_E_Address subroutine.

 VECTOR:
 $00:E045 Get_E_Address

 EXPECTS:
 No input arguments.

 RETURNS:
No output arguments.

The 3-byte result is returned in the global variables: TMP2 ($00:0063), TMP2+1, and
TMP2+2. The bytes are ordered such that: TMP2=LSB and TMP2+2=MSB.

The subroutine will return with the carry-bit = clear if a proper 6-digit address has been
received.

 ERRORS:
The carry-bit will be returned set if any non-digit character is detected before all six ASCII-
Hex digits have been received.

 169

GET_HEX

 DESCRIPTION:
This subroutine will get the next character from any selected input stream into register-A. If it
is a SPACE ($20) character, then GET_HEX will return with the carry-bit=set. Otherwise,
the subroutine will accept another character.

If either byte is not an ASCII Hex character, then this subroutine will also return with the
carry-bit=set, but register-A will be cleared to: $00.

If both bytes were ASCII Hex characters, the pair will be evaluated to produce a single binary
byte of the value represented by the two hexadecimal digits. The GET_HEX subroutine will
return with the value in register-A and the carry-bit=set.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the GET_HEX subroutine.

 VECTOR:
 $00:E039 GET_HEX

 EXPECTS:
 No input arguments.

 RETURNS:
The carry-bit will be set, and 8-bit register-A = $20 if the first character was a SPACE.

or

The carry-bit will be set, and 8-bit register-A = $00 if either input byte was not an ASCII
HEX digit.

or

The carry-bit will be clear and 8-bit register-A will contain the binary value represented by
the two hexadecimal digits input.

 ERRORS:
No errors reported.

 170

Get_HiLo

 DESCRIPTION:
This subroutine will send the following message to all selected output streams:

 ‘Card = HI or LO:’

It then waits for a response, terminated by ENTER ($0D) or ESC (Escape = $1B) from the
selected input streams. The first two characters of the response will be evaluated for the
answer: ‘HI’, ‘hi’, ‘LO’, or ‘lo’.

 VECTOR:
 $00:80F5 Get_HiLo

 EXPECTS:
 No input arguments.

 RETURNS:
 Normally returns with the carry-bit clear and a code in register-A;
 0 = LO
 1 = HI

 ERRORS:
The carry-bit will return set if a null string was entered, or if the entry was terminated with an
ESC character, or if the response was not acceptable. The contents of register-A will be
invalid.

GET_MODEM_RESPONSE (from modem port)

 DESCRIPTION:
This subroutine will allow a programmer to input a string of response data from a “Hayes-
compatible” modem attached to the MODEM port (#2).

 VECTOR:
 $00:8116 GET_MODEM_RESPONSE

 EXPECTS:
 Long pointer to a buffer for received string as follows:

 Bank address of buffer in 8-bit register-A.

 Offset address of buffer in 16-bit register-X.

 The received string will be automatically terminated with a NULL ($00) character.

 The buffer size must be at least one byte larger than the received string. (1 < size < 65535)

 RETURNS:
No arguments returned, however the received string should be in the specified buffer.

The carry-bit will return clear if received data was available.

 ERRORS:
If no received data was available, within a timeout interval (approximately: 1 second), this
subroutine will return with the carry-bit set.

 171

GET_PUT_CHR

 DESCRIPTION:
This subroutine inputs and outputs a character to selected ports. It accepts the next available
character from the selected INPUT streams. Then it sends the character to all activated
OUTPUT streams, except the one corresponding to the specific character’s source.

Refer to the description of CONTROL_INPUT for details about configuring the input stream
and selecting input sources.

Refer to the description of CONTROL_OUTPUT for details about configuring the output
streams.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the GET_PUT_CHR subroutine.

 VECTOR:
 $00:E03C GET_PUT_CHR

 EXPECTS:
 No input arguments.

 RETURNS:
Returns normally with carry-bit clear and the received character in 8-bit register-A. All other
registers are saved upon entry and restored before returning.

 ERRORS:
Exception returns carry-bit set if no input sources are enabled. No other meaningful errors are
detected.

 172

Get_S_Address

 DESCRIPTION:
This subroutine writes the following prompt string to all selected output streams:

 “Enter Lowest Address: BB:AAAA”

It the performs: GET_3BYTE_ADDR which accepts six ASCII-Hex digits, from any
selected input stream, to form a 24-bit address.

The input format is:
 BB:AAAA

Wherein: “BB” is the bank address. This subroutine will echo a ‘:’ after the 2-digit bank
address, to each of the selected output streams. “AAAA” is the offset address within the
bank.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the Get_S_Address subroutine.

 VECTOR:
 $00:E048 Get_S_Adress

 EXPECTS:
 No input arguments.

 RETURNS:
No output arguments.

The 3-byte result is returned in the global variables: TMP2 ($00:0063), TMP2+1, and
TMP2+2. The bytes are ordered such that: TMP2=LSB and TMP2+2=MSB.

The subroutine will return with the carry-bit = clear if a proper 6-digit address has been
received.

 ERRORS:
The carry-bit will be returned set if any non-digit character is detected before all six ASCII-
Hex digits have been received.

 173

GET_STR

 DESCRIPTION:
This subroutine uses GET_PUT_CHR to receive characters and store them into a specified
string buffer. The input string is terminated when an ENTER or ESC (Escape) character is
detected. The completed string is terminated with a NUL ($00) character.

Refer to the description of CONTROL_INPUT for details about configuring the input stream
and selecting input sources.

Refer to the description of CONTROL_OUTPUT for details about configuring the output
streams.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the GET_STR subroutine.

 VECTOR:
 $00:E03F GET_STR

 EXPECTS:
 Long pointer to string buffer as follows:

 Bank address of string in 8-bit register-A.

 Pointer to string in 16-bit register-X.

 RETURNS:
No arguments returned. Received data string will be in specified string buffer. If no inputs
have been selected, this subroutine will return immediately with an empty string.

Normally returns with the carry-bit clear if the string was ended by the ENTER character, or
no inputs were enabled.

 ERRORS:
Exception returns with the carry-bit set if an ESC (Escape) character was detected. No other
errors are detected or reported.

GETDFREE

 DESCRIPTION:
This subroutine computes the amount of free space available on a IC card using the DOS-
compatible file structure.

 VECTOR:
 $00:80BF GETDFREE

 EXPECTS:
 Card specifier in 8-bit register-A:

 $00 = Low card

 $01 = High card

 RETURNS:
Size of free space in bytes as 32-bit value, wherein:

 Register-X = Most significant word size.

 Register-Y = Least significant word size.

 ERRORS:
No error conditions reported.

 174

HEXIN

 DESCRIPTION:
This subroutine will convert an ASCII HEX18 character in register-A into its equivalent binary
value. The binary value is returned in the lower nibble of register-A. The carry-bit will be
clear upon a normal return from this subroutine. Refer to Mensch Monitor Assembly
Listing for specific details regarding the internal operation of the HEXIN subroutine.

LDA #’d’
JSL HEXIN
BCS Nothex3 ;Should never branch
CMP #$0D
BNE Failed ;Should never branch
…
LDA #’q’
JSL HEXIN
BCS NOTHEX3 ;Should always branch

Example:

….

 VECTOR:
 $00:E093 HEXIN

 EXPECTS:
The ASCII hexadecimal character in register-A corresponds to the significant nibble of the
result.

 RETURNS:
 The resulting binary value will be returned in register-A.

 The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if the parameter was not an ASCII HEX digit. (Note: The contents of
register-A may be modified even if the conversion is not performed.)

18 A valid ASCII hexadecimal digit is a numeric character: “0123456789” ($2F < char < $3A) or one
of the first six letters: “ABCDEF” ($40 < char < $47) in uppercase or lowercase: “adcdef” ($61 <
char < $7A).

 175

IFASC

 DESCRIPTION:
This subroutine will check the parameter byte in register-A. If the byte is a valid ASCII
character19 it will return with the carry-bit clear. The carry-bit will be set upon return if the
character was not ASCII. Refer to Mensch Monitor Assembly Listing for specific details
regarding the internal operation of the IFASC subroutine.

LDA #$F1
JSL IFASC
BCC ASCII_YES ;Should never branch
…
LDA #$41
JSL IFASC
BCS NOT_ASCII ;Should always branch

Example:

….

 VECTOR:
 $00:E097 IFASC

 EXPECTS:
Input parameter byte in 8-bit register-A.

 RETURNS:
The carry-bit will be clear of the data byte in register-A corresponds to a visible ASCII
character.

If the parameter byte passed in register-A is not a valid ASCII character, the IFASC
subroutine will return with the carry-bit set in the status register.

 ERRORS:
No errors reported.

IS_CARD_INSERTED

 DESCRIPTION:
This routine tests if a RAM card is installed in the specified PCMCIA slot.

 VECTOR:
 $00:808C IS_CARD_INSERTED

 EXPECTS:
 Register-A: PCMCIA Slot Code: $00 = Low Card Slot
 $01 = High Card Slot

 RETURNS:
If RAM Card is installed:
 Carry Bit = Clear

 ERRORS:
Else, Carry Bit = Set

19 This manual uses the term: “ASCII” when referring to visible characters ($1F < char <$7F) within
the American Standard Code for Information Interchange. Special characters and control
characters are of course also part of the ASCII character set.

 176

ISDECIMAL

 DESCRIPTION:
This subroutine will check the parameter byte in register-A. If the byte is a valid ASCII
decimal digit ($30-$39), it will return with the carry-bit clear in the status register. If the
carry-bit is set upon return, the character was not an ASCII decimal digit. Refer to Mensch
Monitor Assembly Listing for specific details regarding the internal operation of the
ISDECIMAL subroutine.

LDA #$FA
JSL ISDECIMAL
BCC DEC_YES ;Should never branch
…
LDA #’7’
JSL ISDECIMAL
BCS NOT_DEC ;Should always branch

Example:

….

 VECTOR:
 $00:E09B ISDECIMAL

 EXPECTS:
Input parameter byte in 8-bit register-A.

 RETURNS:
The carry-bit will be clear if the data byte register-A corresponds to an ASCII decimal
character.

If the parameter byte passed in register-A is not valid ASCII decimal character, the
ISDECIMAL subroutine will return with the carry-bit set in the status register.

 ERRORS:
No errors reported.

 177

ISHEX

 DESCRIPTION:
This subroutine will check the parameter byte in register-A. If the byte is a valid ASCII
Hexadecimal digit ($30-$39, $41-$46, and $61-$66), it will return with the carry-bit clear in
the status register. If the carry-bit is set upon return, the character was not an ASCII
Hexadecimal digit. Refer to Mensch Monitor Assembly Listing for specific details
regarding the internal operation of the ISHEX subroutine.

LDA #$FA
JSL ISHEX
BCC HEX_YES ;Should never branch
…
LDA #’C’
JSL ISHEX
BCS NOT_HEX ;Should always branch

Example:

….

 VECTOR:
 $00:E09F ISHEX

 EXPECTS:
Input parameter byte in 8-bit register-A.

 RETURNS:
The carry-bit will be clear if the data byte in register-A corresponds to an ASCII Hexadecimal
character. ASCII Hexadecimal characters in the range: $61-$66 will be converted to upper
case. Therefore, an input parameter of: $63 will be returned as: $43 in register-A.

If the parameter byte passed in register-A is not a valid ASCII Hexadecimal character, the
ISHEX subroutine will return with the carry-bit set in the status register.

 ERRORS:
No errors reported.

LOG_DRIVE

 DESCRIPTION:
This routine switches the current drive to the card in the specified PCMCIA slot.

 VECTOR:
 $00:807D LOG_DRIVE

 EXPECTS:
Register-A: PCMCIA Slot code: $00 = Low Card Slot
 $01 = High Card Slot

 RETURNS:
If RAM Card Logged to properly:
 Carry Bit = Clear

 ERRORS:
Else, Carry Bit = Set
 Register-A = Error Code
 $01 = No Card Found in the specified slot
 $02 = Boot Sector on specified card is Invalid
 $13 = Invalid File Access Table (FAT)

 178

MENU_POINT

 DESCRIPTION:
This subroutine does the following:

 1. Asks for a keyboard character.

 2. Keeps the time and date current on the LCD header.

 3. Moves the cursor up & down in first column as arrow keys are pressed.

 4. Returns to the calling program with carry-bit clear and ASCII code for ‘1’
through ‘8’ corresponding to the current menu line when the ENTER key is
pressed.

 5. Returns to the calling program with carry-bit clear and ASCII code for ‘1’
through ‘8’ if such a key is pressed.

 6. Returns to the calling program with carry-bit set if the ESC (Escape) key is
pressed.

 VECTOR:
 $00:80E9 MENU_POINT

 EXPECTS:
No input arguments.

 RETURNS:
Normally returns with carry-bit clear, indicating that a menu selection has been made. The
selection code will be returned in the 8-bit register-A. The possible codes are:
 $31 = Selection ‘1’ Other responses are ignored.
 $32 = Selection ‘2’
 $33 = Selection ‘3’
 $34 = Selection ‘4’
 $35 = Selection ‘5’
 $36 = Selection ‘6’
 $37 = Selection ‘7’
 $38 = Selection ‘8’

 ERRORS:
Exception returns with carry-bit set, indicating that the ESC key was pressed. No other
exceptions or errors are detected or reported.

 179

MENU_SETUP

 DESCRIPTION:
This subroutine will:

 1. Clear the LCD screen

 2. Write the “MENSCH COMPUTER” header.

 3. Write a specified menu string starting on line #3 of the LCD screen.

 4. Positions cursor on line #3, column #0.

 VECTOR:
 $00:80E6 MENU_SETUP

 EXPECTS:
Long pointer to the menu string as follows:

 Bank address of string in 8-bit register-A.

 Offset address of string in 16-bit register-X.

The string must be terminated with either (1) a null character, or (2) the most significant bit of
the last character set.

 RETURNS:
No arguments returned.

 ERRORS:
No errors detected or reported.

MODEM_ANSWER

 DESCRIPTION:
This subroutine forces the external modem to go off-hook, and generate a carrier tone. It
assumes that the attached modem is “Hayes-compatible” and will accept commonly used
“AT” command sequences.

 VECTOR:
 $00:8119 MODEM_ANSWER

 EXPECTS:
No input arguments.

 RETURNS:
No arguments returned.

If the modem has been configured to automatically return result codes, a response may have
been received.

Used the GET_MODEM_RESPONSE subroutine to check for a result code.

 ERRORS:
Carry-bit (Clear = OK / Set = Command did not execute properly.)

 180

MODEM_DIAL

 DESCRIPTION:
This subroutine forces the external modem to go off-hook, wait for a dial tone, and then dial a
telephone number. It assumes that the attached modem is “Hayes-compatible” which will
accept commonly used “AT” command sequences.

 VECTOR:
 $00:80F8 MODEM_DIAL

 EXPECTS:
Long pointer to the telephone number string as follows:

 Bank address of string in 8-bit register-A.

 Offset address of string in 16-bit register-X.

The string must be terminated with either (1) a null character, or (2) the most significant bit of
the last character set. The string must be fewer than 65535 bytes long.

 RETURNS:
No arguments returned.

If the modem has been configured to automatically return result codes, a response may have
been received.

Use the GET_MODEM_RESPONSE subroutine to check for a result code.

 ERRORS:
Carry-bit (Clear = OK / Set = Command did not execute properly.)

MODEM_HANG_UP

 DESCRIPTION:
This subroutine forces the external modem to go on-hook, and hangup the telephone line. It
assumes that the attached modem is “Hayes-compatible” and will accept commonly used
“AT” command sequences.

 VECTOR:
 $00:80FB MODEM_HANG_UP

 EXPECTS:
No input arguments.

 RETURNS:
No arguments returned.

If the modem has been configured to automatically return result codes, a response may have
been received.

Use the GET_MODEM_RESPONSE subroutine to check for a result code.

 ERRORS:
Carry-bit (Clear = OK / Set = Command did not execute properly.)

 181

MODEM_REDIAL

 DESCRIPTION:
This subroutine forces the external modem to go off-hook, wait for a dial tone, and then redial
the last telephone number stored in the modem’s memory. It assumes that the attached
modem is “Hayes-compatible” which will accept commonly used “AT” command sequences.

 VECTOR:
 $00:811C MODEM_REDIAL

 EXPECTS:
No input arguments.

 RETURNS:
No arguments returned.

If the modem has been configured to automatically return result codes, a response may have
been received.

Use the GET_MODEM_RESPONSE subroutine to check for a result code.

 ERRORS:
Carry-bit (Clear = OK / Set = Command did not execute properly.)

MOVE_BUFFER_TO_LCD

 DESCRIPTION:
This subroutine will move a 600-character LCD image from BUFFER1+40 (doesn’t move
line 0). Lines 1 through 15 are moved. A null is automatically inserted into buffer position
641 to be used as a string terminator.

 VECTOR:
 $00:8101 MOVE_BUFFER_TO_LCD

 EXPECTS:
No input arguments.

 RETURNS:
No arguments returned. All other registers are saved upon entry and restored before
returning.

The global variable: BUFFER1 is located @ $00:2800 in the Mensch Computer OS
configuration.

 ERRORS:
No errors detected or reported.

 182

MOVE_PAGE_TO_BUF

 DESCRIPTION:
This subroutine will move a 600-character LCD image to BUFFER1+40 (doesn’t move line
0). Lines 1 though 15 are moved. A null is automatically inserted into buffer position 641 to
be used as a string terminator.

 VECTOR:
 $00:80FE MOVE_PAGE_TO_BUF

 EXPECTS:
No input arguments.

 RETURNS:
No arguments returned. All other registers are saved upon entry and restored before
returning.

The global variable: BUFFER1 is located @ $00:2800 in the Mensch Computer OS
configuration.

 ERRORS:
No errors detected or reported.

POSITION_PIXEL (@ Coordinates: H,V)

 DESCRIPTION:
This subroutine will position the next graphics operation at the specified coordinates on the
LCD screen. The upper left corner of the display is: H=0, V=0. The lower right corner
corresponds to coordinates: H=239, V=127.

 VECTOR:
 $00:81B6 POSITION_PIXEL

 EXPECTS:
Horizontal coordinate (0-239) in 16-bit register-X.

 Vertical coordinate (0-127) in 8-bit register-Y.

 RETURNS:
No arguments returned.

 ERRORS:
The carry-bit normally will return clear, but it will be set if the specified coordinates were
unacceptable. (Clear = OK / Set = Unacceptable)

 183

POSITION_TEXT_CURSOR (@ Row & Column)

 DESCRIPTION:
This subroutine will position the text cursor at the specified coordinates on the LCD screen.

 VECTOR:
 $00:802F POSITION_TEXT_CURSOR

 EXPECTS:
Row coordinate (0-15) 8-bit in register-A.

Column coordinate (0-39) in 16-bit register-X.

 RETURNS:
No arguments returned.

 ERRORS:
The carry-bit normally will return clear, but it will be set if the specified coordinates were
unacceptable. (Clear = OK / Set = Unacceptable)

PUT_CHR

 DESCRIPTION:
This subroutine will output a character to each of the selected output streams.

Refer to the description of CONTROL_OUTPUT for details about configuring the output
streams.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the PUT_CHR subroutine.

 VECTOR:
 $00:E04B PUT_CHR

 EXPECTS:
Character to be output in 8-bit register-A.

 RETURNS:
All registers are saved upon entry and restored before returning.

The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if no output ports are enabled.

 184

PUT_STR

 DESCRIPTION:
This subroutine will output a string to each of the selected output streams.

Refer to the description of CONTROL_OUTPUT for details about configuring the output
streams.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the PUT_STR subroutine.

 VECTOR:
 $00:E04E PUT_STR

 EXPECTS:
Long pointer to the string as follows:

 Bank address of string in 8-bit register-A.

 Offset address of string in 16-bit register-X.

The string must be terminated with either (1) a null character, or (2) the most significant bit of
the last character set.

The maximum string input size is limited to 640 characters.

 RETURNS:
No arguments returned. All registers are saved upon entry and restored before returning.

The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if no output ports are enabled.

 185

RD_LCD_STRNG

 DESCRIPTION:
This subroutine will read a text string from the LCD memory.

 VECTOR:
 $00:80DA RD_LCD_STRNG

 EXPECTS:
Long pointer to the string as follows:

 Bank address of string in 8-bit register-A.

 Offset address of string in 16-bit register-X.

Character count to be read in 16-bit register-Y.

The data will be read from the LCD memory starting at the current text cursor position.

 RETURNS:
The carry-bit will be clear if the operation was successfully performed.

The string will be read into the specified buffer and terminated with a NUL ($00) character at
the [Register-Y + 1] location in the buffer.

 ERRORS:
The carry-bit will be set if the current text cursor position plus the character count exceeds the
screen size, generating an invalid cursor position.

 NOTE:
The string buffer should be at least one byte larger than the longest string to be read into it.

READ_ALARM

 DESCRIPTION:
This subroutine will read the current system alarm setting as a null-terminated text string into
a user-specified buffer.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the READ_ALARM subroutine.

 VECTOR:
 $00:E051 READ_ALARM

 EXPECTS:
A pointer in 16-bit register-X to a nine (9) character buffer, located in memory bank #0.

 RETURNS:
Null terminated time string in specified buffer.

The string format is: HH:MM:SS <null>

 wherein: HH = Hours code (0-23 possible) in ASCII digits.

 “00” = Midnight
 “12” = Noon
 “23” = 11 PM

 MM = Minutes code (0-59 possible) in ASCII digits.

 SS = Seconds code (0-59 possible) in ASCII digits.

 ERRORS:
No meaningful errors.

 186

READ_DATE

 DESCRIPTION:
This subroutine will read the current system date as a null-terminated text string into a user-
specified buffer.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the READ_DATE subroutine.

 VECTOR:
 $00:E054 READ_DATE

 EXPECTS:
A pointer in 16-bit register-X to a nine (9) character buffer, located in memory bank #0.

 RETURNS:
Null terminated date string in specified buffer.

The string format is: MM-DD-YY <null>

 wherein: MM = Month code (1-12 possible) in ASCII digits.

 “01” = January
 “02” = February
 “03” = March
 “04” = April
 “05” = May
 “06” = June
 “07” = July
 “08” = August
 “09” = September
 “10” = October
 “11” = November
 “12” = December

 DD = Day of month code (1-31 possible) in ASCII digits.

 YY = Year code (last two digits: “94” = 1994) in ASCII digits.

 ERRORS:
No meaningful errors.

 187

READ_TIME

 DESCRIPTION:
This subroutine will read the current system time as a null-terminated text string into a user-
specified buffer.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the READ_TIME subroutine.

 VECTOR:
 $00:E057 READ_TIME

 EXPECTS:
A pointer in 16-bit register-X to a nine (9) character buffer, located in memory bank #0.

 RETURNS:
Null terminated time string in specified buffer.

The string format is: HH:MM:SS <null>

 wherein: HH = Hours code (0-23 possible) in ASCII digits.

 “00” = Midnight
 “12” = Noon
 “23” = 11 PM

 MM = Minutes code (0-59 possible) in ASCII digits.

 SS = Seconds code (0-59 possible) in ASCII digits.

 ERRORS:
No meaningful errors.

REMOVE_DIRECTORY (Reserved!)

 DESCRIPTION:
This vector currently invokes a non-functional “dummy” subroutine. It is reserved for
subdirectory operations in future versions of the Mensch Operating System.

 VECTOR:
 $00:80CB REMOVE_DIRECTORY

 EXPECTS:
Not Applicable.

 RETURNS:
Not Applicable.

 ERRORS:
Not Applicable.

 188

RESET

 DESCRIPTION:
This subroutine will invoke the master start-up vector in ROM, effectively resetting the entire
W65C265 system. Refer to Mensch Monitor Assembly Listing for specific details
regarding the processing and internal operations associates with the RESET library vector.

NOTE: This is an entry vector, not a subroutine.
IT WILL NOT RETURN!

 VECTOR:
 $00:E084 RESET

 EXPECTS:
No input arguments.

 RETURNS:
This vector does not return.

 ERRORS:
No errors reported.

RESET_ALARM

 DESCRIPTION:
This subroutine will reset all alarm flags to a “don’t care” condition, effectively canceling any
alarm setup or active alarm.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the RESET_ALARM subroutine.

 VECTOR:
 $00:E05A RESET_ALARM

 EXPECTS:
No input arguments.

 RETURNS:
No arguments returned.

 ERRORS:
No meaningful errors are detected.

 189

RETRIEVE_DISPLAY_STATUS

 DESCRIPTION:
This subroutine will get the status byte for the LCD display.

 VECTOR:
 $00:8029 RETRIEVE_DISPLAY_STATUS

 EXPECTS:
No input arguments.

 RETURNS:
 Display status byte in 8-bit register-A:

Bit # Meaning
0-LSB LCD Power: 0 = OFF 1 = ON

1
2
3
4
5
6

7-MSB

 ERRORS:
No meaningful errors.

 NOTE:
If the controller has been turned: OFF, via the CONTROL_DISPLAY_PORT subroutine, then
the returned status bits may be misleading.

SBREAK

 DESCRIPTION:
This subroutine will call the “software break” routine in ROM. It will save and print the
processor’s registers, and transfer control to the Mensch ROM Monitor’s command processor.
Refer to Mensch Monitor Assembly Listing for specific details regarding the processing and
internal operations of the SBREAK subroutine.

NOTE: This is an entry vector, not a subroutine.
IT WILL NOT RETURN!

 VECTOR:
 $00:E05D SBREAK

 EXPECTS:
No input arguments.

 RETURNS:
This vector does not return.

 ERRORS:
No errors reported.

 190

SELECTED_COMMON_BAUD_RATE (for all ports except modem)

 DESCRIPTION:
This subroutine allows the program to reconfigure the common baud rate generator which
drives the serial ports for the keyboard, printer, and PC link. Changing this baud rate will
affect all three ports. If used incorrectly, it can disable the keyboard.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the SELECT_COMMON_BAUD_RATE subroutine.

 VECTOR:
 $00:E060 SELECT_COMMON_BAUD_RATE

 EXPECTS:
Baud rate selection code in 8-bit register-A:
 0 = 110 Baud
 1 = 150 Baud
 2 = 300 Baud
 3 = 600 Baud
 4 = 1200 Baud
 5 = 1800 Baud
 6 = 2400 Baud
 7 = 4800 Baud
 8 = 9600 Baud
 9 = 14400 Baud
 A = 19200 Baud
 B = 38400 Baud
 C = 57600 Baud
 D = 115000 Baud

 RETURNS:
No arguments returned.

 ERRORS:
Carry-bit (Clear = OK / Set = Unacceptable selection code.)

SELECT_DISK

 DESCRIPTION:
This routine selects a PCMCIA Slot to be the Default Drive.

 VECTOR:
 $00:80D1 SELECT_DISK

 EXPECTS:
Register-A: Device code to be the Default Drive
 $00 = Internal (No Card Selected)
 $01 = Low Card
 $02 = High Card

 RETURNS:
No arguments returned.

 ERRORS:
No errors returned.

 191

SEND_BYTE_TO_PC (Send via PC link port)

 DESCRIPTION:
This subroutine will queue one byte from 8-bit register-A to be sent to the serial PC link port.
The carry-bit will be set if the serial PC link port cannot accept data, otherwise it will be clear
upon return.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the SEND_BYTE_TO_PC subroutine.

 VECTOR:
 $00:E063 SEND_BYTE_TO_PC

 EXPECTS:
Output byte in 8-bit register-A.

 RETURNS:
No arguments returned.

 ERRORS:
Carry-bit (Clear = OK / Set = Serial PC link port cannot accept data.)

SEND_CR

 DESCRIPTION:
This subroutine will output a CR (Carriage-Return/Enter = $0D) character to each of the
selected output streams.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the SEND_CR subroutine.

 VECTOR:
 $00:E066 SEND_CR

 EXPECTS:
No input arguments.

 RETURNS:
The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if no output ports are enabled.

SEND_HEX_OUT

 DESCRIPTION:
This subroutine will output an 8-bit value as two ASCII HEX digits to each of the selected
output streams.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the SEND_HEX_OUT subroutine.

 VECTOR:
 $00:E06C SEND_HEX_OUT

 EXPECTS:
Value to be output in 8-bit register-A.

 RETURNS:
The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if no output ports are enabled.

 192

SEND_SPACE

 DESCRIPTION:
This subroutine will output a SPACE ($20) character to each of the selected output streams.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the SEND_SPACE subroutine.

 VECTOR:
 $00:E069 SEND_SPACE

 EXPECTS:
No input arguments.

 RETURNS:
The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if no output ports are enabled.

 193

SET_ALARM

 DESCRIPTION:
This subroutine will set the system alarm time from a null-terminated text string in a user-
specified buffer.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the SET_ALARM subroutine.

 VECTOR:
 $00:E06F SET_ALARM

 EXPECTS:
A pointer in 16-bit register-X to a nine (9) character buffer, located in memory bank #0.

The string format is: HH:MM:SS <null>

 wherein: HH = Hours code (0-23 possible) in ASCII digits.

 “00” = Midnight
 “12” = Noon
 “23” = 11 PM

 MM = Minutes code (0-59 possible) in ASCII digits.

 SS = Seconds code (0-59 possible) in ASCII digits.

 RETURNS:
No arguments returned.

 ERRORS:
Carry-bit (Clear = OK / Set = Error detected)

 NOTE:
This subroutine requires a fixed-size, fixed-format input string. Therefore, the <null>
terminator character is acceptable, but not really necessary.

 RELATED:
The “User Alarm Wakeup Subroutine Vector” (UALRMIRQ = $00:0134) allows application
programs to associate a subroutine with the alarm timeout condition. This vector should be
initialized prior to setting the alarm. When the alarm times out, all essential overhead will be
handled by the Mensch ROM Monitor before transferring control to the vector. Refer to
Mensch Monitor Assembly Listing for specific details regarding the operation of the feature.

 194

SET_Breakpoint

 DESCRIPTION:
This is the subroutine invoked by typing the ‘B’ command at the monitor prompt. The ‘B’
monitor command allows the user to set a breakpoint at a specific location. SET_Breakpoint
will request an address and accept input via the each of the selected output streams.

The user must enter six ASCII-Hex digits to form a 24-bit address. The input format is:

 BB:AAAA

Wherein: “BB” is the bank address. This subroutine will echo a ‘:’ after the 2-digit bank
address. “AAAA” is the offset address within the bank.

After a valid address has been entered, SET_Breakpoint will store a BRK instruction ($00)
at the target location. When program execution reaches that address, the BRK instruction
will transfer control to the Mensch Monitor in ROM.

NOTE: This subroutine would not normally be used by application
software on the W65C265. It has been included in this vector
table to support anticipated needs of the extended Mensch
Computer Operating System in that specific configuration.
Developers should consult Mensch Monitor Assembly
Listing for specific details regarding internal operation of this
subroutine in order to determine suitability for other
applications and configurations.

 VECTOR:
 $00:E072 SET_Breakpoint

 EXPECTS:
No input arguments. This is an interactive subroutine which requests ‘parameters from the
user as needed.

 RETURNS:
The carry-bit will be clear if the operation was successfully performed.

 ERRORS:
The carry-bit will be set if invalid address data was entered.

 195

SET_DATE

 DESCRIPTION:
This subroutine will set the current system date from a null-terminated text string provided in
a user-specified buffer.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the SET_DATE subroutine.

 VECTOR:
 $00:E075 SET_DATE

 EXPECTS:
A pointer in 16-bit register-X to a nine (9) character buffer, located in memory bank #0.

The string format is: MM-DD-YY <null> or MM/DD.YY <null>
 wherein: MM = Month code (1-12 possible) in ASCII digits.

 “01” = January
 “02” = February
 “03” = March
 “04” = April
 “05” = May
 “06” = June
 “07” = July
 “08” = August
 “09” = September
 “10” = October
 “11” = November
 “12” = December

 DD = Day of month code (1-31 possible) in ASCII digits.

 YY = Year code (last two digits: “94” = 1994) in ASCII.

 RETURNS:
No arguments returned.

 ERRORS:
Carry-bit (Clear = OK / Set = Error detected)

 NOTE:
This subroutine requires a fixed-size, fixed-format input string. Therefore, the <null>
terminator character is acceptable, but not really necessary.

 196

SET_TIME

 DESCRIPTION:
This subroutine will set the system time from a null-terminated text string in a user-specified
buffer.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the SET_TIME subroutine.

 VECTOR:
 $00:E078 SET_TIME

 EXPECTS:
A pointer in 16-bit register-X to a nine (9) character buffer, located in memory bank #0.

The string format is: HH:MM:SS <null>

 wherein: HH = Hours code (0-23 possible) in ASCII digits.

 “00” = Midnight
 “12” = Noon
 “23” = 11 PM

 MM = Minutes code (0-59 possible) in ASCII digits.

 SS = Seconds code (0-59 possible) in ASCII digits.

 RETURNS:
No arguments returned.

 ERRORS:
Carry-bit (Clear = OK / Set = Error detected)

 NOTE:
This subroutine requires a fixed-size, fixed-format input string. Therefore, the <null>
terminator character is acceptable, but not really necessary.

STRCMP

 DESCRIPTION:
This routine will compare 2 strings and test if the same.

 VECTOR:
 $00:80C5 STRCMP

 EXPECTS:
TMP_PTR: Address of String Number 1

Register-X: High Address of String Number 2

Register-A: Bank of String Number 2

 RETURNS:
If Strings are Equal:
 Carry Bit = Clear

 ERRORS:
If Strings are NOT Equal:
 Carry Bit = Set

No other meaningful errors detected or reported.

 197

UPPER_CASE

 DESCRIPTION:
This subroutine will convert a lower-case ASCII (a-z) character into an upper-case ASCII (A-
Z) character. The character to be converted must be passed in register-A. The converted
result will be returned in register-A. If they byte is not a lower case ASCII character, it will
return unchanged. Refer to the Mensch Monitor Assembly Listing for specific details
regarding the internal operation of the UPPER_CASE subroutine.

LDA #’b’
JSL UPPER_CASE
CMP #’B’
BNE FAILED ;Should never branch

Example:

…

 VECTOR:
 $00:E0A3 UPPER_CASE

 EXPECTS:
Character to be converted in register-A.

 RETURNS:
Converted upper-case character is returned in register-A. If the byte was not a lower case
ASCII character, it will be returned unchanged.

 ERRORS:
No errors reported.

VERSION

 DESCRIPTION:
This subroutine will return info on the current ROM version. Refer to Mensch Monitor
Assembly Listing for specific details regarding the internal operation of the VERSION
subroutine.

 VECTOR:
 $00:E07B VERSION

 EXPECTS:
No input arguments.

 RETURNS:
ROM version information:

 Register-X = Pointer to 4-character string representing the version.
 (Example: “2.01”)

 Register-Y = Pointer to formatted ASCII string representing the last assembly date.
 (Example: “SAT DEC 3 12:16:05 1994”)

 Register-A = 0 (No particular significance.)

 ERRORS:
No errors reported.

 198

WR_3_ADDRESS

 DESCRIPTION:
This subroutine will write a 3-byte address to the selected outputs in ASCII-Hex characters.
The 3-byte address to be sent must be loaded into global variable: TMP0 ($00:005D).

Refer to the description of CONTROL_OUTPUT for details about configuring the output
streams.

Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the WR_3_ADDRESS subroutine.

 VECTOR:
 $00:E07E WR_3_ADDRESS

 EXPECTS:
No input arguments in registers. The 3-byte address to be sent must be loaded into global
variable: TMP0 ($00:005D), TMP0+1 and TMP0+2. The least significant byte (LSB) of the
3-byte address must reside in TMP0 and the MSB must be in TMP0+2. The address to be
sent must be loaded into TMP0.

 RETURNS:
No arguments returned.

 ERRORS:
No errors detected or reported.

WR_LCD_STRNG

 DESCRIPTION:
This subroutine will write a string of data to the LCD screen at the current text cursor
position. This routine does not process non-displayable codes such as BS (Backspace = $08)
or CR ($0D).

 VECTOR:
 $00:80D7 WR_LCD_STRNG

 EXPECTS:
Long pointer to the string as follows:

 Bank address of string in 8-bit register-A.

 Offset address of string in 16-bit register-X.

The string must be terminated with either (1) a null character, or (2) the most significant bit of
the last character set.

 RETURNS:
No arguments returned.

 ERRORS:
No meaningful errors.

 199

WRITE_LCD_CHARACTER (@ Text Cursor Position)

 DESCRIPTION:
This subroutine will write one character to the current text cursor position in the text display,
and then advance the cursor to the next position.

Programmers should note that this subroutine should not be used unless they know where the
cursor is positioned. If the cursor coordinates are outside the display area, the string will not
appear.

 VECTOR:
 $00:8035 WRITE_LCD_CHARACTER

 EXPECTS:
Output byte in register-A.

 RETURNS:
No arguments returned.

 ERRORS:
The carry-bit normally will return clear, but will be set if this subroutine cannot write the
character as expected.

WRITE_PIXEL (@ Graphics Cursor Position)

 DESCRIPTION:
This subroutine will write one pixel at the current graphics cursor position in the graphics
display. (Optional: ON or OFF)

 VECTOR:
 $00:81B9 WRITE_PIXEL

 EXPECTS:
Z/NZ pixel code in 8-bit register-A. If zero, the pixel will be cleared. If non-zero, the pixel
will be written.

 RETURNS:
No arguments returned.

 ERRORS:
No meaningful errors.

 200

XS28IN

 DESCRIPTION:
This subroutine will read S28 records from any selected input stream, and place them into
memory. It will wait (i.e. not return) until input is provided.

An ESC (Escape) character from any selected input stream will cancel the load operation and
cause the subroutine to return with the carry-bit = set. Other characters from multiple inputs
may cause load errors. This subroutine will begin computing a checksum when the start of an
S28 record is detected.

Each time a record is processed, this subroutine outputs a period (‘.’) and 4-digit record
number to all of the selected output streams. A ‘?’ is returned if the checksum does not agree.
This is for user feedback only. After receiving the final record a carry-bit = clear will be
returned if no errors had been encountered. Likewise, if errors occurred, a carry-bit = set will
be returned.

This operation cycle will continue until an error occurs or the “S8” end record is received.
Refer to Mensch Monitor Assembly Listing for specific details regarding the internal
operation of the XS28IN subroutine.

 VECTOR:
 $00:E081 XS28IN

 EXPECTS:
No input arguments. The initial load address for each block of data is the first part of each
S28 record.

 RETURNS:
The carry-bit normally will return clear if the load operation completes without incident. No
register arguments are returned, and no registers have been saved.

 ERRORS:
The carry-bit will be set if ESC (Escape) was detected or if checksum errors occurred. Each
S28 record is loaded into memory as it is processed. A checksum can only reflect the
integrity of the data. When a checksum error is detected, it means that the memory has
already been loaded with contaminated data. This subroutine is used by the ‘S’ command.
Refer to that description for comments regarding error detection.

 WARNING:
The address fields of the S28 records are not filtered in any way. ALL POSSIBLE
ADDRESSES ARE ACCEPTABLE! The user is responsible for assuring that records do not
overwrite critical locations which may disrupt proper operation of the firmware.

 201

Appendix C – Glossary

ADSI
Abbreviation for: Analog Display Services Interface. This is a new series of telephone
standards from BELLCORE relating to menus and responses for smart telephones.

Checksum
Value computed summing the contents of a file or block of memory prior to storage or
transfer. Sometimes the checksum may be manipulated (negated, inverted, modulus-256,
ect.) for specific algorithms. This value is then stored or transferred with the data. The
computation may be repeated later and compared to the previous value to verify the integrity
of the data.

CLOCK (i.e. Fast Clock / Slow Clock / Default Clock)
The W65C265 may operate from either of two clock sources. These can be dynamically
selected. The slower clock is typically used to support low-power mode.

DTMF
Abbreviation for: Dual-Tone Mutli-Frequency

Emulation Mode
The W65C816 and therefore the W65C265 has the capability of operating in a mode wherein
it’s registers and instruction set emulate those of the earlier W65C02 design. This means that
programs written for the W65C02 may execute without modification under emulation mode
on the W65C265.

EPROM
Abbreviation for: Erasable Programmable Read-Only Memory

Interrupt
A break in the normal sequence of instruction execution.

I/O Library
This is a group of subroutines located in the W65C265 internal ROM and external EPROM
which is accessible to user application programs. These subroutines support the standard I/O
operations available in the Mensch Computer configuration.

LCD
Abbreviation for: Liquid Crystal Display

PCMCIA
Abbreviation for: Personal Computer Memory Card Interface Association. This is an
international organization of interested parties attempting to standardize the interface for plug-
in IC memory cards.

NOTE: Then Mensch Computer configuration supports a subset of the PCMCIA Type I
standard.

PWM (as input)
Abbreviation for: Pulse Width Measurement. This is a hardware feature supported by the
W65C265 chip.

PWM (as output)
Abbreviation for: Pulse Width Modulation. This is a technique for manipulating binary
output levels to control the duty cycle when used in analog applications. Examples include
digital sound reproduction and DC motor speed control.

 202

RAM
Abbreviation for: Random Access Memory

ROM
Abbreviation for: Read-Only Memory

Shell
A shell is usually a command interpreter intended to simplify user interaction with more
complex subsystem. The shell on the Mensch, in the PCMCIA DOS-compatible file
emulation, allows the user to initiate complicated operations via single keystrokes or simple
keyword commands.

W65C02 (Microprocessor)
The W65C02 has 66 instructions, 180 operational codes, and 15 addressing modes with one
8-bit accumulator, two 8-bit index registers, and an 8-bit stack pointer (256 byte stack). The
standard part has an 8-bit data bus and a 16-bit address bus (64K byte address space). The
clock input is not divided internally; the memory bus runs at one clock cycle per memory
cycle. The W65C02S is compatible with the NMOS 6502 microprocessor used in early
Apple, Atari, Nintendo, and Commodore computers.

W65C134 (Microprocessor)
The W65C134S has a W65C02S core microprocessor which is a fully static version of the
65C02. This part can operate at very low clock frequencies for low power consumption. The
W65C134S chip also includes: 192 bytes of static RAM, 4K bytes of mask ROM, seven 8-bit
bi-directional I/O ports, and four 16-bit timers. The 56 I/O pins may be reconfigured in
software to provide additional functions. These include: external memory bus (8-bit data, 16-
bit address), hardware interrupts (1 NMI, 2 IRQ, 7 positive edge, 5 negative edge), eight chip
select outputs (for external static memories and I/O), a UART, and a serial interface bus
(SIB). In addition, the W65C134S has the following features: vector interrupt system (22
priority encoded interrupts), two clock inputs (software switchable between low frequency
and high frequency), wide power supply range (1.8 volts to 6.0 volts), and a debug monitor on
ROM.

W65C265 (Microprocessor)
The W65C265S has a W65C816S core microprocessor which is a fully static version of the
W65C816S. This part can operate at very low clock frequencies for low power consumption.
The W65C265S chip also includes: 576 bytes of static RAM, 8K bytes of mask ROM, eight
8-bit bi-directional I/O ports, and eight 16-bit timers. The 65I/O pins may be reconfigured in
software to provide additional functions. These include: external memory bus (8-bit data, 24-
bit non-multiplexed address), hardware interrupts (1 NMI or ABORT, 1 IRQ, 1 positive edge,
3 negative edges), eight chip select outputs (for external static memories and I/O), four
UARTs, and a parallel interface bus (PIB). In addition, the W65C265S has the following
features: vectored interrupt system (29 priority encoded interrupts), two clock inputs
(software switchable between low frequency and high frequency), wide power supply range
(2.8 volts to 6.0 volts), and a debug monitor in ROM.

W65C816 (Microprocessor)
The W65C816S has 91 instructions, 255 operational codes, and 24 addressing modes with one
16-bit accumulator, two 16-bit index registers, and a 16-bit stack pointer (64K byte stack).
The standard part has an 8-bit data bus and a 24-bit address bus (16M byte address space).
The clock input is not divided internally; the memory bus runs at one clock cycle per memory
cycle. The W65C816 has a software switchable emulation mode which allows it to run all
6502 and 65C02 software without modification.

 203

WDC
Abbreviation for: The Western Design Center, Inc. of Mesa, Arizona. The company was
founded in 1978 by William D. Mensch, Jr., who remains president and CEO. WDC designs,
licenses, and sells CMOS microprocessors and microcomputers.

 204

Appendix D – Connector Pinouts

Appendix D.1 – Internal Battery Connector (Pinouts)

Connector Pin # Signal Name Comments

1 Unregulated Charging
Voltage

2 Ground

3 Battery Positive
Terminal

Appendix D.2 – Controller Connector (Pinouts)

There are only nine pins available on the game controller connector. One is used to supply the
unit with +5 volts, and another is ground. This leaves only seven pins for everything else.

Pin # Port Pin Identifier
1 PB0
2 PB1
3 PB2
4 PB3
5 +5 Volts
6 PB4
7 PB5
8 Ground
9 PB6

The most significant bit of port (PB7) is used as an output to switch the supply voltage to the
controller connector. There is a jumper (JMP4) which may be used to change this feature and
allow the user to define the entire 8-bit port. (Refer to the Mensch Computer schematics for the
exact location of this jumper.)

Switch encoding on the SEGA Controller may be interpreted from the following table:

PB6 PB5 PB4 PB3 PB2 PB1 PB0 Notes
Start 0 A - - Down Up

C 1 B Right Left Down Up

 205

Appendix D.3 – Serial Connectors (Pinouts))

Connector
Pin # Signal Name Meaning Comments

1 GND Ground
2 TXD Transmitted Data
3 +5V +5 volts
4 RXD Received Data
5 DSR Data Set Ready
6 DTR Data Terminal Ready

W65C265
Port # Mensch Usage Panel Label Comments

S0 Keyboard KBD
S1 Printer PTR
S2 Modem MDM
S3 PC PC

Appendix D.4 – Display Cable Connector (Pinouts)

Mensch
Connector

Pin #

Mensch
Signal Name

Contrast
Pot

T6963C
Module

Pin #

T6963C Module
Signal Name Comments

1,2,7,8,23,24 GND 1,18 GND
3,4,9,21,22 +5V P4 2,19 +5V

 P3 3 V0
5 SEL 5 SEL
6 MOD 16 MOD

10 DISPEN 15 DISPEN
11 DISPRS 4 DISPRS
12 DISPR/We 6 DISPR/We
13 DO0 7 DO0
14 DO1 8 DO1
15 DO2 9 DO2
16 DO3 10 DO3
17 DO4 11 DO4
18 DO5 12 DO5
19 DO6 13 DO6
20 DO7 14 DO7

 P2 17 VEE

 206

Appendix D.5 – IC Card Connectors (Pinouts)

Connector Pin # Signal Name PCMCIA Usage Comments
1 GND GND
2 D3 DATA 3
3 D4 DATA 4
4 D5 DATA 5
5 D6 DATA 6
6 D7 DATA 7

7 HighICCard = CS6*
LowICCard = CS5* Card Enable 1- Memory Mapping: HighICCard = $40:0000

 LowICCard = $01:0000
8 A10 ADDR 10
9 OE* Output Enable -

10 A11 ADDR 11
11 A9 ADDR 9
12 A8 ADDR 8
13 A13 ADDR 13
14 A14 ADDR 14
15 WE* Write Enable -
16 (Not Used) Ready/Busy +/- *Note: PCMCIA signal is ignored.
17 +5V Vcc
18 +5V Prog. Voltage 1 *Note: PCMCIA Prog. Voltage 1 is usually +12 volts.
19 A16 ADDR 16
20 A15 ADDR 15
21 A12 ADDR 12
22 A7 ADDR 7
23 A6 ADDR 6
24 A5 ADDR 5
25 A4 ADDR 4
26 A3 ADDR 3
27 A2 ADDR 2
28 A1 ADDR 1
29 A0 ADDR 0
30 D0 DATA 0
31 D1 DATA 1
32 D2 DATA 2
33 (Not Used) Write Protect + *Note: PCMCIA signal is not used.
34 GND GND
35 GND GROUND

36 HighICCard = P44R
LowICCard = P42R Card Detect 1 -

37 (Not Used) DATA 11
38 (Not Used) DATA 12
39 (Not Used) DATA 13
40 (Not Used) DATA 14
41 (Not Used) DATA 15
42 +5V Card Enable 2 -
43 (Not Used) REFRESH * Note: PCMCIA signal is not used.
44 (Not Used) RESERVED
45 (Not Used) RESERVED
46 A17 ADDR 17
47 A18 ADDR 18

 207

Connector Pin # Signal Name PCMCIA Usage Comments
48 A19 ADDR 19
49 A20 ADDR 20
50 A21 ADDR 21
51 +5V Vcc
52 +5V Prog Voltage 2 *Note: PCMCIA Prog. Voltage 2 is usually +12 volts.
53 A22 ADDR 22
54 A23 ADDR 23
55 GND ADDR 24
56 GND ADDR 25
57 (Not Used) RESERVED
58 P47/RES CARD RESET +
59 (Not Used) WAIT - *Note: PCMCIA signal is not used.
60 (Not User) RESERVED

61 HighICCard = RS2*
LowICCard = RS1* REGISTER SEL -

62 (Not Used) BATT VOLT DET2
63 (Not Used) BATT VOLT DET1
64 (Not Used) DATA 8
65 RW* DATA 9
66 (Not Used) DATA 10

67 HighICCard = P45R
LowICCard = P43R CARD DETECT 2 -

68 GND GROUND

 208

Appendix D.6 – Expansion Connector (Pinouts)

Connector Pin # Signal Name Comments and Notes
1 GND
2 GND
3 D3
4 (Not Used)
5 D4
6 BA/DOD*
7 D5
8 RES*
9 D6

10 IRQ*
11 D7
12 NMI*/AEO
13 CS7*
14 FCLK*
15 A10
16 +5V
17 OE*
18 (Not Used)
19 A11
20 (Not Used)
21 A9
22 (Not Used)
23 A8
24 A17
25 A13
26 A18
27 A14
28 A19
29 WE*
30 A20
31 (Not Used)
32 A21
33 +5V
34 +5V
35 +5V
36 +5V
37 A16
38 A22
39 A15
40 A23
41 A12
42 P72/CS2*
43 A7
44 P71/CS1*
45 A6
46 P47/RES
47 A5
48 P48/RES*
49 A4

 209

Connector Pin # Signal Name Comments and Notes
50 BE/RDY
51 A3
52 PA4
53 A2
54 PA5
55 A1
56 PA6
57 A0
58 PA7
59 D0
60 PH12
61 D1
62 RW*
63 D2
64 RUN/SYNC
65 (Not Used)
66 (Not Used)
67 GND
68 GND

 210

Appendix E – Keycode To ASCII Conversion Tables

Key SCAN
CODE ASCII SHIFT CTRL ALT ALT +

CTRL FUNC

ESC 01 1B -- -- -- -- --

F1 02 A5 B1 BD C9 -- --
F2 03 A6 B2 BE CA -- --
F3 04 A7 B3 BF CB -- --
F4 05 A8 B4 C0 CC -- --
F5 06 A9 B5 C1 CD -- --
F6 07 AA B6 C2 CE -- --
F7 08 AB B7 C3 CF -- --
F8 09 AC B8 C4 D0 -- --
F9 10 AD B9 C5 D1 -- --

F10 11 AE BA C6 D2 -- --
F11 12 AF BB C7 D3 -- --
F12 13 B0 BC C8 D4 -- --

NumLk 14 -- -- -- -- -- --

PrtSc/SysRq 15 F0 F1 -- -- -- --
Insert/ScrLock 16 9B -- -- -- -- F2/FE

Delete 17 9C -- -- -- FF --
Pause/Break 18 F3 F3 F4 F3 -- --

`~ key 19 60 7E -- -- -- --
1! key 20 31 21 -- -- -- --

2@ key 21 32 40 -- 80 -- --
3# key 22 33 23 -- -- -- --
4$ key 23 34 24 -- -- -- --
5% key 24 35 25 -- -- -- --
6^ key 25 36 5E -- -- -- --
7& key 26 37 26 -- -- -- --
8* key 27 38 2A -- -- -- --
9(key 28 39 28 -- -- -- --
0) key 29 30 29 -- -- -- --
-_ key 30 2D 5F -- -- -- --
=+ key 31 3D 2B -- -- -- --

Backspace 32 08 08 08 08 08 --

Home 33 9D D5 DD E5 -- --
Tab 34 09 ED -- -- -- --

qQ 35 71 51 11 91 -- --
wW 36 77 57 17 97 -- --
eE 37 65 45 05 85 -- --
rR 38 72 52 12 92 -- --
tT 39 74 54 14 94 -- --
yY 40 79 59 19 99 -- --
uU 41 75 55 15 95 -- --
iI 42 69 49 09 89 -- --

oO 43 6F 4F 0F 8F -- --

 211

Key SCAN
CODE ASCII SHIFT CTRL ALT ALT +

CTRL FUNC

pP 44 70 50 10 90 -- --
[{ 45 5B 7B -- -- -- --
]} 46 5D 7D -- -- -- --
\ | 47 5C 7C -- -- -- --

PageUp 48 9F D7 DF E7 -- --
CapsLock 50 -- -- -- -- -- --

aA 51 61 41 01 81 -- --
sS 52 73 53 13 93 -- --
dD 53 64 44 04 84 -- --
fF 54 66 46 06 86 -- --
gG 55 67 47 07 87 -- --
hH 56 68 48 08 88 -- --
jJ 57 6A 4A 0A 8A -- --

kK 58 6B 4B 0B 8B -- --
lL 59 6C 4C 0C 8C -- --
;: 60 3B 3A -- -- -- --
‘” 61 27 22 -- -- -- --

Enter 63 0D -- -- -- -- --
PageDn 64 A0 D8 E0 E8 -- --

Left Shift 66 -- -- -- -- -- --

zZ 68 7A 5A 1A 9A -- --
xX 69 78 58 18 98 -- --
cC 70 63 43 03 83 -- --
vV 71 76 56 16 96 -- --
bB 72 62 42 02 82 -- --
nN 73 6E 4E 0E 8E -- --
mM 74 6D 4D 0D 8D -- --
,< 75 2C 3C -- -- -- --
. > 76 2E 3E -- -- -- --
/? 77 2F 3F -- -- -- --

Right Shift 78 -- -- -- -- -- --
Up Arrow 79 A1 D9 E1 E9 -- --

End 80 9E D6 DE E6 -- --
Function 81 -- -- -- -- -- --
Left Ctrl 82 -- -- -- -- -- --
Left Alt 83 -- -- -- -- -- --

Space Bar 84 20 -- -- -- -- --
Right Alt 86 -- -- -- -- -- --
Right Ctrl 87 -- -- -- -- -- --
Left Arrow 88 A3 DB E3 EB -- --

Down Arrow 89 A2 DA E2 EA -- --
Right Arrow 90 A4 DC E4 EC -- --

 212

CODE KEY/KEYS

00 Not Used.
01 CTRL + aA key
02 CTRL + bB key
03 CTRL + cC key
04 CTRL + dD key
05 CTRL + eE key
06 CTRL + fF key
07 CTRL + gG key

08

Ctrl + hH key or
BACKSPACE key only or

with any of: CTRL or SHIFT
or ALT modifiers

09 CTRL + iI key or TAB key
0A CTRL + jJ key
0B CTRL + kK key
0C CTRL + lL key

0D CTRL + mM key or
ENTER key

0E CTRL + nN key
0F CTRL + oO key
10 CTRL + pP key
11 CTRL + qQ key
12 CTRL + rR key
13 CTRL + sS key
14 CTRL + tT key
15 CTRL + uU key
16 CTRL + vV key
17 CTRL + wW key
18 CTRL + xX key
19 CTRL + yY key
1A CTRL + zZ key
1B ESC key

1C, 1D, 1E,
and 1F Not Used.

20 Space bar
21 SHIFT + 1! key
22 SHIFT + ‘ “ key
23 SHIFT + 3# key
24 SHIFT + 4$ key
25 SHIFT + 5% key
26 SHIFT + 7& key
27 ‘ “ key
28 SHIFT + 9(key
29 SHIFT + 0) key
2A SHIFT + 8* key
2B SHIFT + =+ key
2C , < key
2D - _ key
2E . > key
2F / ? key

CODE KEY/KEYS

30 0) key
31 1! key
32 2@ key
33 3# key
34 4$ key
35 5% key
36 6^ key
37 7& key
38 8* key
39 9(key
3A SHIFT + ;: key
3B ;: key
3C SHIFT + ,< key
3D =+ key
3E SHIFT + . > key
3F SHIFT + . > key
40 SHIFT + 2@ key
41 SHIFT + aA key
42 SHIFT + bB key
43 SHIFT + cC key
44 SHIFT + dD key
45 SHIFT + eE key
46 SHIFT + fF key
47 SHIFT + gG key
48 SHIFT + hH key
49 SHIFT + iI key
4A SHIFT + jJ key
4B SHIFT + kK key
4C SHIFT + lL key
4D SHIFT + mM key
4E SHIFT + nN key
4F SHIFT + oO key
50 SHIFT + pP key
51 SHIFT + qQ key
52 SHIFT + rR key
53 SHIFT + sS key
54 SHIFT + tT key
55 SHIFT + uU key
56 SHIFT + vV key
57 SHIFT + wW key
58 SHIFT + xX key
59 SHIFT + yY key
5A SHIFT + zZ key
5B [{ key
5C \ | key
5D]} key
5E SHIFT + 6^ key
5F SHIFT + - _ key
60 ` ~ key
61 aA key

 213

CODE KEY/KEYS
62 bB key
63 cC key
64 dD key
65 eE key
66 fF key
67 gG key
68 hH key
69 iI key
6A jJ key
6B kK key
6C lL key
6D mM key
6E nN key
6F oO key
70 pP key
71 qQ key
72 rR key
73 sS key
74 tT key
75 uU key
76 vV key
77 wW key
78 xX key
79 yY key
7A zZ key
7B SHIFT + [{ key
7C SHIFT + \ | key
7D SHIFT +]} key
7E SHIFT + `~ key
7F
80 ALT + 2@ key
81 ALT + aA key
82 ALT + bB key
83 ALT + cC key
84 ALT + dD key
85 ALT + eE key
86 ALT + fF key
87 ALT + gG key
88 ALT + hH key
89 ALT + iI key
8A ALT + jJ key
8B ALT + kK key
8C ALT + lL key
8D ALT + mM key
8E ALT + nN key
8F ALT + oO key
90 ALT + pP key
91 ALT + qQ key
92 ALT + rR key
93 ALT + sS key

CODE KEY/KEYS

94 ALT + tT key
95 ALT + uU key
96 ALT + vV key
97 ALT + wW key
98 ALT + xX key
99 ALT + yY key
9A ALT + zZ key
9B Insert/ScrLock key
9C Delete key
9D Home key
9E End key
9F PageUp key
A0 PageDn key
A1 Up Arrow key
A2 Down Arrow key
A3 Left Arrow key
A4 Right Arrow key
A5 F1 key
A6 F2 key
A7 F3 key
A8 F4 key
A9 F5 key
AA F6 key
AB F7 key
AC F8 key
AD F9 key
AE F10 key
AF F11 key
B0 F12 key
B1 SHIFT + F1 key
B2 SHIFT + F2 key
B3 SHIFT + F3 key
B4 SHIFT + F4 key
B5 SHIFT + F5 key
B6 SHIFT + F6 key
B7 SHIFT + F7 key
B8 SHIFT + F8 key
B9 SHIFT + F9 key
BA SHIFT + F10 key
BB SHIFT + F11 key
BC SHIFT + F12 key
BD CTRL + F1 key
BE CTRL + F2 key
BF CTRL + F3 key
C0 CTRL + F4 key
C1 CTRL + F5 key
C2 CTRL + F6 key
C3 CTRL + F7 key
C4 CTRL + F8 key

 214

CODE KEY/KEYS

C5 CTRL + F9 key
C6 CTRL + F10 key
C7 CTRL + F11 key
C8 CTRL + F12 key
C9 ALT + F1 key
CA ALT + F2 key
CB ALT + F3 key
CC ALT + F4 key
CD ALT + F5 key
CE ALT + F6 key
CF ALT + F7 key
D0 ALT + F8 key
D1 ALT + F9 key
D2 ALT + F10 key
D3 ALT + F11 key
D4 ALT + F12 key
D5 SHIFT + Home key
D6 SHIFT + End key
D7 SHIFT + PageUp key
D8 SHIFT + PageDn key
D9 SHIFT + Up Arrow key
DA SHIFT + Down Arrow key
DB SHIFT + Left Arrow key
DC SHIFT + Right Arrow key
DD CTRL + Home key
DE CTRL + End key
DF CTRL + PageUp key
E0 CTRL + PageDn key
E1 CTRL + Up Arrow key
E2 CTRL + Down Arrow key
E3 CTRL + Left Arrow key
E4 CTRL + Right Arrow key
E5 ALT + Home key
E6 ALT + End key
E7 ALT + PageUp key
E8 ALT + PageDn key
E9 ALT + Up Arrow key
EA ALT + Down Arrow key
EB ALT + Left Arrow key
EC ALT + Right Arrow key
ED SHIFT + Tab key

EE &EF Not Used.
F0 PrtSc/SysRq key
F1 SHIFT + PrtSc/SysRq key
F2 Fn + Insert/ScrLock key

F3
Pause/Break key or

SHIFT + Pause/Break key or
ALT + Pause/Break key

F4 CTRL + Pause/Break key

CODE KEY/KEYS

F5
F6
F7
F8
F9
FA
FB
FC
FD
FE Fn + Insert/ScrLock key
FF ALT + CTRL + Delete key

 215

Appendix F – Bibliography / Recommended References

Additional information on WDC products may be obtained by contacting:

The Western Design Center, Inc.
2166 East Brown Road

Mesa, Arizona 85213 USA

TEL: (480) 962-4545
FAX: (480) 835-6442

Some useful materials from WDC are listed below:

Publication Notes
Programming the 65816
Including the 6502, 65C02, and 65802
by David Eyes and Ron Lichty

Excellent programming reference and
tutorial for 65816 & W65C265S.

W65C265S
INFORMATION, SPECIFICATION, AND
DATA SHEET

Very detailed hardware data on the
W65C265S micro-controller chip.

MENSCH MONITOR ROM
REFERENCE MANUAL

Describes the internal ROM monitor
program of the W65C265S chip.

Mensch Computer
User Guide

Non-technical user description of the
Mensch Computer.

Information about the Analog Display Services Interface (ADSI) standards for telephones may be obtained
from:

BELLCORE ADSI PROJECT OFFICE

TEL: (908) 758-2257

Detailed information on IC memory cards and applicable standards are available from:

Source Publication Notes
Personal Computer Memory PC Card Standard

Card International Association Specification 2.01 11/92
(PCMCIA)

 Socket Services
1030 G East Duane Avenue Specification 2.00 11/92

Sunnyvale, CA 94086
 Card Services

TEL: (408) 720-0107 Specification 2.00 11/92
Fax: (408) 720-9416

 PC Card ATA Mass Storage
 Specification 1.01 11/92

 AIMS Specification
 1.01 11/92

 Recommended Extensions
 1.00 11/92

Sycard Technology The PCMCIA Developer’s Guide
 by Michael T. Mori

Sunnyvale, CA 94086

TEL: (408) 247-0703

 216

Specific information on non-WDC products mentioned in this manual may be obtained by contacting the
supplier directly. The following table identifies some of these sources:

Source Publication Notes
Citizen American Corporation CITIZENTM GSX-190 Describes the

 User’s Manual GSX-190 serial
2450 Broadway Ave. Suite 600 printer.
Santa Monica, California 90404

TEL: (310) 453-0614
FAX: (310)453-2814

SEGA SEGATM 6-Button Arcade Pad Describes the SEGA
 controller.

3335 Arden Road
Hayward, CA 94545

DENSITRON CORPORATION Application Notes for the T6963C
 LCD Graphics Controller

3425 W. Lomita Boulevard
Torrance, CA 90505

TEL: (213) 530-3530
FAX: (213) 325-8958

 217

Appendix G – Detailed Memory Map

Address Range Function
$00:0000-$00:01FF W65C265S INTERNAL RAM
$00:0000-$00:00FF W65C265S internal RAM. (Page #0)
$00:0100-$00:0138 RAM IRQ Vectors
$00:0139-$00:01FF W65C265S internal RAM. (Page #1)
$00:0200-$00:7FFF EXTERNAL 32K RAM IN MENSCH COMPUTER
$00:0140-$00:02FF Mensch Computer Stack
$00:0300-$00:0380 Variables

$00:0381-$00:023FF Used by MENSCHWORKS
$00:0400-$00:05FF Graphics Variables & Buffering
$00:0600-$00:06FF Available
$00:0700-$00:07FF Keyboard (Input From) Buffer
$00:0780-$00:07BF Keyboard (Output To) Buffer
$00:07C0-$00:07FF Printer (Output From) Buffer
$00:0800-$00:0BFF Modem Input Buffer
$00:0C00-$00:0FFF PC Link Input Buffer
$00:1000-$00:17FF Printer Output Buffer
$00:1800-$00:1FFF Modem Output Buffer
$00:2000-$00:27FF PC Link Output Buffer
$00:2800-$00:2A89 Screen Buffer #1 (Global variable: BUFFER1)
$00:2A8A-$00:2D14 Screen Buffer #2
$00:2D15-$00:2FFF ?
$00:3000-$00:4FFF Application Buffers
$00:5000-$00:5CFF OSSHELL BUFFERS
$00:5D00-$00:77FF ?
$00:7800-$00:7A8F PCMCIA Variables & Buffers
$00:7A90-$00:7FFF ?
$00:8000-$00:FFFF TOTAL EXTERNAL EPROM IN MENSCH COMPUTER
$00:8000-$00:DEFF USABLE EXTERNAL EPROM IN MENSCH COMPUTER

$00:8000-$00:8004 “WDC” semaphore & startup ENTRY POINT in external EPROM memory for
Firmware.

$00:8005-$00:DEFF Mensch Operating System
$00:DF00-$00:DF07 Not Usable.
$00:DF08-$00:DF1F External I/O (LCD)
$00:DF20-$00:DF27 Internal I/O
$00:DF28-$00:DF3F Reserved.
$00:DF40-$00:DF49 Register Storage
$00:DF4A-$00:DF4F Reserved.
$00:DF50-$00:DF6F Int. Timers
$00:DF70-$00:DF77 UARTs
$00:DF78-$00:DF7F Unused Parallel Port
$00:DF80-$00:DF8F W65C265S internal SRAM (Reserved by Monitor)
$00:DFC0-$00:DFFF External I/O
$00:E000-$00:FFFF W65C265S Internal Mensch ROM Monitor firmware.
$00:FF00-$00:FFFF Interrupt Vectors
$01:0000-$3F:FFFF Low IC Card Memory
$40:0000-$BF:FFFF High IC Card Memory
$C0:0000-$FF:FFFF Available to custom applications via the expansion connector.

 218

Appendix H – S28 Record Transfer Format

FEILD # Bytes DESCRIPTION

Prefix 1 All records in the S28 style begin with the
letter: ‘S’ ($53).

Record Type 1 Two types: ‘2’ ($32) = Data record
 ‘8’ ($38) = EOF record

Record Length 2
Record length (Address, Data, and Checksum
fields) formatted as two ASCII hexadecimal
digits, MSB first/LSB last.

The record length of an EOF record will always
be: “08” ($30, $38), because the other fields are
fixed.

Load Address 6 Load address (24-bit) formatted as six ASCII
hexadecimal digits, MSB first/LSB last.

 The address of an EOF record will always be
zero, “000000” ($30, $30, $30, $30, $30, $30).

Data Variable
(Typically: 32, 48,

Actual data bytes formatted as two ASCII
hexadecimal digits each.

 or 64 characters)
 The data field of an EOF record will be empty.

Checksum 2
Modulo-256 sum of all characters in previous
three fields complemented (1’s complement)
and formatted as two ASCII hexadecimal digits.

 The checksum field of an EOF record will
always be: “77” ($37, $37).

Figure 106
S28 Memory Transfer Format

 219

INDEX

_
_Bin2BCD, 145, 147
_Box, 29, 127, 143, 149
_CHECK_VOLTAGE, 135, 139, 149
_CHECK_YN, 126, 144, 150
_Circle, 150
_ClearColor, 29, 127, 143, 151
_ClearFill, 29, 143, 151
_CLR_STPWTCH, 135, 145, 152, 180
_CONTROL_CONTROLLER_PORT, 48, 121, 135, 139, 140, 152
_CONTROL_DISPLAY, 29, 122, 136, 139, 143, 153
_CONTROL_INPUT, 142, 155
_CONTROL_KEYBOARD_PORT, 32, 116, 136, 139, 141, 156
_CONTROL_MODEM_PORT, 40, 118, 136, 139, 141, 158
_CONTROL_OUTPUT, 142, 160
_CONTROL_PC_PORT, 44, 120, 136, 139, 142, 161, 163
_CONTROL_PRINTER_PORT, 36, 117, 136, 139, 141, 164, 166
_DISP_LCD_HEADER, 29, 126, 144, 167
_DO_MAIN_MENU, 29, 126, 144, 168
_ENGAGE_LOW_POWER_MODE, 139, 168
_GET_A_PRINTER_BYTE, 141, 168
_GET_BIN_NUM, 126, 145, 170
_GET_CONTROLLER_DATA, 48, 121, 140, 170
_GET_KEYBOARD_CHARACTER, 32, 116, 141, 171
_GET_MODEM_BYTE, 40, 118, 141, 171
_GetGrStatus, 143, 173
_GetPoint, 143, 173
_HLine, 29, 127, 143, 174
_INIT_DP_POINTER, 145, 174, 180
_Line, 29, 127, 143, 175
_OS_SHELL, 145, 175
_Point, 29, 127, 143, 176
_PRINT_A_BYTE, 141, 176
_PtCode, 36, 117, 141, 176
_PtLn, 36, 117, 141, 178
_PtScreen, 29, 36, 117, 128, 143, 178, 190, 192
_RD_COUNT, 135, 145, 189
_RD_STPWTCH, 135, 145, 152, 180
_RESTORE_DP_POINTER, 145, 174, 180
_RETRIEVE_CONTROLLER_STATUS, 48, 121, 140, 181
_RETRIEVE_KEYBOARD_STATUS, 32, 116, 141, 181
_RETRIEVE_MODEM_PORT_STATUS, 40, 118, 141, 183
_RETRIEVE_PC_PORT_STATUS, 44, 120, 142, 184
_RETRIEVE_PRINTER_PORT_STATUS, 36, 117, 141, 185
_SELECT_MODEM_BAUD_RATE, 40, 113, 118, 140, 141, 186
_SEND_A_MODEM_BYTE, 40, 118, 141, 186
_SEND_BEEP, 129, 140, 187
_SEND_BYTE_TO_KEYBOARD, 32, 116, 141
_SEND_DTMF_DIGIT, 129, 140, 188
_SEND_MODEM_STRING, 40, 119, 141, 189
_SET_COUNT, 135, 145, 178, 189
_SetColor, 29, 127, 144, 190
_SetFill, 29, 127, 144, 190
_SetGraph, 30, 36, 117, 128, 143, 178, 190
_SetGraphText, 30, 117, 128, 143, 178, 192
_SetText, 30, 36, 117, 128, 143, 178, 192

 220

_START, 145, 192
_TIME_DATE_CHK, 30, 126, 144, 194
_VLine, 29, 127, 144, 194
_WrDec, 29, 125, 143, 194

A
Alarm function, 209
Alter Memory, 108
Alter_Memory, 146, 196
Appendices, 138

Appendix A, 51, 55, 138
Appendix B, 27, 32, 36, 40, 45, 48, 61, 64, 113, 116, 117, 119, 120, 121, 126, 127, 128, 129, 132, 133, 134, 136,

139
Appendix C, 278
Appendix D, 22, 23, 28, 283, 284, 286, 289
Appendix E, 114, 291
Appendix F, 21, 297
Appendix G, 300
Appendix H, 302

Apple Computer, 2
Arrow Keys, 93
ASCBIN, 146, 197
ASCII, 31, 32, 81, 82, 83, 106, 107, 114, 115, 146, 170, 176, 188, 194, 196, 197, 198, 199, 210, 211, 212, 213, 214,

215, 216, 218, 222, 229, 230, 233, 234, 237, 240, 241, 242, 243, 244, 245, 247, 256, 258, 265, 267, 268, 269, 270,
272, 274, 291, 292, 302

ASCII Screen Dump, 81, 82, 83, 106, 107

B
BACKSPACE, 142, 197, 294
BACKSPACE key, 294
Battery, 17, 21, 22, 50, 51, 52, 54, 55, 61, 135, 138

connector pinouts, 3, 22, 23
Battery Pack, 51, 55

Replacement, 50
Baud Rate Generation, 112
Bibliography, 21, 297
BIN2DEC, 146, 199
BINASC, 146, 199
Breakpoint, 76, 268
Buffer, 37, 156, 158, 161, 164, 168, 170, 171, 181, 182, 183, 184, 185, 231, 235, 238, 251, 252, 255, 256, 258, 267,

269, 270

C
Cabling, 27
Calendar, 60, 133, 139
Carry-Bit, 112, 147, 149, 150, 168, 169, 170, 171, 172, 174, 175, 176, 186, 194, 196, 197, 199, 201, 204, 206, 207,

210, 211, 213, 214, 215, 216, 217, 218, 219, 222, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 242, 244,
245, 247, 252, 253, 254, 255, 265, 266, 268, 276, 277

CHANGE_DIRECTORY, 201
CHARGER, 21, 50
Checksum, 56, 58, 97, 212, 218, 277, 278, 302
Citizen America Corporation, 2
CLEAR_LCD_DISPLAY, 29, 124, 127, 143, 201, 206
CLEAR_TO_END_OF_LINE, 29, 124, 143, 203
CLOCK (ie. Fast Clock / Slow Clock / Default Clock), 17, 21, 22, 52, 54, 56, 58, 59, 60, 62, 67, 133, 134, 204, 209,

278, 280, 281
CLOCK (ie. Fast Clock / Slow Clock / Default Clock), 20

 221

Com Log Company, Inc., 2, 3, 4
Commands, 39, 64, 71, 87, 109, 110, 111, 114, 175, 280
Communications, 42, 109, 118, 120
Configuration, 17, 24, 32, 33, 35, 37, 38, 41, 45, 46, 51, 56, 112, 113, 120, 122, 129, 137, 156, 157, 158, 159, 161, 164,

196, 210, 211, 212, 213, 214, 215, 216, 217, 218, 222, 251, 252, 268, 278
CPU Module, 27, 31, 34, 38, 42, 46

Connections, 4, 159, 163, 166
Direct Connection To Another Mensch Computer, 44
Keyboard, 17, 31, 32, 33, 51, 52, 59, 61, 69, 84, 85, 86, 112, 113, 114, 115, 116, 134, 139, 147, 150, 155, 156, 157,

159, 163, 166, 171, 181, 182, 247, 263
Other Game Controllers, 47
Printers, 34, 35, 89, 112
To a PC, 120

contrast control, 27
CONTROL_SPEAKER_AMP, 63, 129, 136, 139, 140, 203, 204
CONTROL_TONES, 129, 140, 204
Controller, 26, 46, 48, 121, 123, 140, 181, 283, 299

Connector Pinouts, 3
CPU Module, 17, 20, 21, 22, 23, 24, 27, 31, 34, 38, 42, 51, 52, 114, 138, 152

ON/OFF Switch, 21, 52
CREATE_DIRECTORY, 204

D
Date, 54, 58, 66, 67, 84, 91, 194, 247, 256, 269, 272
DateField, 54
DEBUG MENU, 74, 75, 76, 77, 78, 80, 81, 83, 92

Display Registers, 109
DUMP To Screen, 80, 81, 104, 105
FILL Memory, 109

Decimal Mode, 57
DEL (Delete) Key, 295, 296
Densitron Corporation, 2
DIR_COMMD, 206
DISP_LCD_STRING, 124, 143, 206
Display, 20, 26, 28, 29, 61, 76, 109, 110, 130, 143, 153, 261, 278, 284, 297
DISPLAY & SET ALARM, 69
DISPLAY & SET DATE, 67
DISPLAY & SET TIME, 67
Display Cable Connector, 28, 284
DISPLAY REGISTERS, 76
DISPLAY_PCMCIA_ERROR, 145, 208
Displaying Graphics, 126
Displaying Text, 124
DO_LOW_POWER_PGM, 146, 209
DOS-Compatible File Support, 25
DTMF TEST, 86
DUMP S28 Records, 100, 101
DUMP to PRINTER, 102, 103
DUMP to Screen, 104
Dump_1_line_to_Output, 146, 210
Dump_1_line_to_Screen, 146, 211
Dump_It, 146, 212
Dump_to_Output, 146, 213
Dump_to_Printer, 146, 214
Dump_to_Screen, 146, 215, 216
Dump_to_Screen_ASCII, 216
DUMPREGS, 146, 217
DumpS28, 139, 218

 222

E
ENTER Key, 64, 75, 93, 108, 170, 247, 294
EPROM, 17, 20, 23, 24, 56, 57, 58, 84, 91, 112, 139, 278, 300
ESC (Escape) key, 64, 74, 75, 77, 78, 80, 81, 82, 85, 90, 95, 97, 100, 102, 104, 106, 108, 170, 247
Expansion Connectors, 22

Pinouts, 22, 23, 28, 283, 284, 286, 289
External Charger, 50, 55, 62, 135
External Memory, 57

F
FCLOSE, 131, 145, 219
FDELETE, 131, 145, 219
FGETBLOCK, 131, 145, 220
FGETC, 131, 145, 220, 228
FGETS, 131, 145, 221
FGETW, 131, 145, 221, 228
FILELENGTH, 131, 145, 221
FILL MEMORY, 78
FILL_Memory, 146, 222
FINDFIRST, 131, 145, 223
Firmware, 4, 23, 24, 30, 34, 56, 59, 69, 84, 91, 112, 114, 115, 122, 128, 131, 135, 277, 301
Firmware Subroutine Library, 27, 32, 36, 40, 45, 48, 61, 64, 113, 116, 117, 119, 120, 121, 126, 127, 128, 129, 132,

133, 134, 136
_CHECK_VOLTAGE, 135
_CHECK_YN, 144
_ClearColor, 151
_ClearFill, 29
_CLR_STPWTCH, 135
_CONTROL_CONTROLLER_PORT, 48
_CONTROL_DISPLAY, 122
_CONTROL_INPUT, 142
_CONTROL_KEYBOARD_PORT, 156
_CONTROL_MODEM_PORT, 158
_CONTROL_OUTPUT, 160
_CONTROL_PC_PORT, 161
_CONTROL_PRINTER_PORT, 164
_DISP_LCD_HEADER, 167
_DO_MAIN_MENU, 168
_ENGAGE_LOW_POWER_MODE, 168
_GET_A_PRINTER_BYTE, 168
_GET_BIN_NUM, 170
_GET_CONTROLLER_DATA, 170
_GET_KEYBOARD_CHARACTER, 171
_GetGrStatus, 143
_GetPoint, 143
_INIT_DP_POINTER, 145
_OS_SHELL, 175
_PRINT_A_BYTE, 176
_PtScreen, 178
_RD_COUNT, 178
_RD_STPWTCH, 135
_RESTORE_DP_POINTER, 145
_RETRIEVE_CONTROLLER_STATUS, 181
_RETRIEVE_KEYBOARD_STATUS, 181
_RETRIEVE_MODEM_PORT_STATUS, 183
_RETRIEVE_PC_PORT_STATUS, 184
_RETRIEVE_PRINTER_PORT_STATUS, 185
_SELECT_MODEM_BAUD_RATE, 186
_SEND_A_MODEM_BYTE, 186

 223

_SEND_BEEP, 187
_SEND_BYTE_TO_KEYBOARD, 187
_SEND_DTMF_DIGIT, 188
_SEND_MODEM_STRING, 189
_SET_COUNT, 189
_SetColor, 190
_SetGraph, 190
_SetGraphText, 192
_TIME_DATE_CHK, 194
Alter_Memory, 196
BACKSPACE, 197
CHANGE_DIRECTORY, 201
CLEAR_LCD_DISPLAY, 201
CLEAR_TO_END_OF_LINE, 203
CONTROL_SPEAKER_AMP, 203
CONTROL_TONES, 204
CREATE_DIRECTORY, 204
DIR_COMMD, 206
DISP_LCD_STRING, 29, 206
DISPLAY_PCMCIA_ERROR, 208
DO_LOW_POWER_PGM, 209
Dump_1_line_to_Output, 210
Dump_1_line_to_Screen, 211
Dump_to_Output, 146
Dump_to_Printer, 146
Dump_to_Screen, 146
Dump_to_Screen_ASCII, 216
FGETBLOCK, 220
FILELENGTH, 221
FILL_Memory, 222
FINDFIRST, 223
FNSPLIT, 145, 223
FPUTBLOCK, 131, 145, 226
GET_3BYTE _ADDR, 142, 229, 230, 233, 237
Get_Address, 146, 230
GET_ALARM _STATUS, 60, 134, 139, 231
GET_BYTE_FROM_PC, 44, 120, 142, 231
GET_CHR, 142, 155, 232
Get_E_Address, 146, 233
GET_STR, 142, 238
GETDFREE, 131, 238
HEXIN, 146, 240
IFASC, 146, 242
IS_CARD_INSERTED, 131, 144, 242
ISDECIMAL, 146, 244
ISHEX, 146, 245
LOG_DRIVE, 131, 145, 245
MENU_POINT, 29, 64, 126, 144, 247
MENU_SETUP, 29, 64, 126, 144, 248
MODEM_ANSWER, 40, 118, 141, 248
MODEM_DIAL, 40, 118, 141, 250
MODEM_HANG_UP, 40, 118, 141, 250
MODEM_REDIAL, 40, 118, 141, 251
MOVE_BUFFER_TO_LCD, 29, 125, 143, 251
MOVE_PAGE_TO_BUF, 252
POSITION_PIXEL, 29, 127, 252
POSITION_TEXT_CURSOR, 29, 124, 143, 206, 253
PUT_CHR. See , See , See, See , See , See , See , See , See
PUT_STR, 142, 254
RD_LCD_STRNG, 29, 124, 143, 255
READ_ALARM, 60, 134, 139, 255

 224

READ_DATE, 60, 133, 139, 256
READ_TIME, 60, 133, 139, 258
REMOVE_DIRECTORY, 258
RESET, 21, 24, 52, 53, 56, 60, 61, 134, 139, 146, 209, 260, 287
RESET_ALARM, 260
RETRIEVE_DISPLAY_STATUS, 29, 122, 143, 261
SBREAK, 146, 261
SELECT_COMMON_BAUD_RATE, 32, 36, 44, 113, 116, 117, 120, 140, 141, 142, 157, 163, 166, 263
SELECT_DISK, 131, 145, 263
SEND_BYTE_TO_PC, 44, 120
SEND_CR, 142, 265
SEND_HEX_OUT, 142, 199, 265, 266
SEND_SPACE, 142, 266
SET_ALARM, 60, 134, 140, 267
SET_Breakpoint, 146, 268
STRCMP, 145, 270
UPPER_CASE, 146, 272
vector, 147, 149, 150, 151, 152, 153, 155, 156, 158, 160, 161, 164, 167, 168, 170, 171, 173, 174, 175, 176, 178,

180, 181, 183, 184, 185, 186, 187, 188, 189, 190, 192, 194, 196, 197, 199, 201, 203, 204, 206, 208, 209, 210,
211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233,
234, 235, 236, 237, 238, 240, 242, 244, 245, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 260, 261, 263,
265, 266, 267, 268, 269, 270, 272, 274, 276, 277

VERSION, 146, 272
WR_3_ADDRESS, 142, 274
WR_LCD_STRNG. See , See, See , See , See
WRITE_LCD_CHARACTER, 30, 124, 143, 207, 276
WRITE_PIXEL, 30, 127, 276

FNSPLIT, 145, 223
FOPEN, 131, 145, 225
FORMAT, 111, 131, 145, 208, 225
FORTH, 137
FPUTBLOCK, 145, 226
FPUTC, 131, 145, 226
FPUTS, 131, 145, 227
FPUTW, 131, 145, 227
FSEEK, 131, 145, 228

G
Game Controller

See also
Controller, 140

GAME CONTROLLER (TEST MENU Item), 46, 47, 48, 50, 84, 90, 121, 170, 283
Game Programming, 121
GET_3BYTE_ADDR, 142, 229
Get_Address, 146, 230
GET_ALARM_STATUS, 60
GET_HEX, 146, 234
Get_HiLo, 126, 144, 235
GET_MODEM_RESPONSE, 40, 118, 141, 235, 248, 250, 251
Get_S_Address, 146, 237

H
Hardware, 17, 24, 61, 62, 135, 279, 280, 297
HEAD PHONES jack, 21
HighICCard, 24, 286, 287, 288

 225

I
IC Card Connectors

Pinouts, 283, 284, 286, 289
IC Memory Cards, 17
Initial Checkouts, 52
Initialization, 21, 24, 56
INITIALIZE MODEM, 70, 71
Insert Key, 295, 296
Internal Speaker, 21
Interrupts, 56, 58, 62, 156, 158, 161, 164, 209, 280

J
Jack

CHARGER, 21

K
Keyboard, 20, 23, 31, 32, 112, 113, 114, 115, 116, 156, 181, 187, 284, 300

Commanding, 114, 187
Decoding Input, 114
Decoding Status, 113

KEYBOARD TEST, 85
Keycodes, 114, 291

L
LCD (See

Liquid Crystal Display), 21, 22, 26, 27, 28, 29, 30, 36, 51, 52, 54, 58, 61, 64, 80, 81, 83, 91, 96, 97, 101, 103, 104,
106, 117, 122, 123, 124, 125, 126, 127, 128, 143, 144, 153, 167, 173, 174, 175, 178, 189, 190, 192, 194, 201,
203, 206, 207, 208, 211, 212, 247, 248, 251, 252, 253, 255, 261, 274, 276, 278, 299, 300

Liquid Crystal Display
Accessing, 32, 36, 40, 48, 60, 74, 131, 133, 134, 228, 231
Displaying Graphics, 126

LOAD & DUMP MENU, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108
ASCII Screen Dump, 6, 7, 13, 14
DUMP S28 Records, 13
DUMP to PRINTER, 13
DUMP to Screen, 13, 14
LOAD S28 Records, 7, 97, 98, 99

LOAD S28 Records, 7, 13
LOG_DRIVE, 10, 131
LowICCard, 5, 24, 25, 286, 287, 288
Low-Power Mode (Power Management), 6, 61

M
MAIN MENU, 6, 7, 52, 53, 58, 65, 66, 73, 74, 83, 84, 92, 93, 95, 96, 108, 109, 111, 168, 175
Memory Map, 5, 11, 23, 286
Mensch Computer Availability, 5
Mensch FORTH Support, 137
Mensch Operating System, 2, 3, 6, 23, 24, 25, 27, 56, 77, 139, 168, 201, 204, 224, 258, 300
Mensch, W.D. Jr. ("Bill"), 15, 282
MENU_POINT, 10
MENU_SETUP, 10
Menuing Support, 6, 64, 126
Menus, 8, 13, 84, 96, 109, 144

DEBUG MENU, 6
LOAD & DUMP MENU, 7, 96

 226

Main Menu, 6, 12
MAIN MENU, 6, 7
SETUP MENU, 12
TEST MENU, 13, 84

MODEM SETUP, 6, 72, 73
MODEM TEST, 6
MODEM_ANSWER, 10
MODEM_DIAL, 10
MODEM_HANG_UP. See
MODEM_REDIAL, 10
MOVE_BUFFER_TO_LCD, 10
MOVE_PAGE_TO_BUF, 10

O
ON/OFF Switch, 21, 52
OS_SHELL, 8, 131

P
PC Link, 43, 44, 45, 97, 109, 112, 120, 139, 147, 157, 159, 161, 163, 166, 184, 231, 263, 265
PCMCIA, 7, 8, 9, 13, 14, 24, 25, 65, 93, 94, 95, 111, 145, 175, 208, 219, 223, 225, 242, 245, 263, 278, 280, 286, 287,

297, 298, 300
PCMCIA CARD MENU, 7, 93, 94, 95
POSITION_PIXEL, 10
POSITION_TEXT_CURSOR, 10
Power Consumption, 21, 52, 61, 280
Power Control, 5
POWER Indicator, 5
Power Management, 6, 7, 8, 62, 135, 139

Low-Power Mode, 6
Power Module, 6, 12
Power Subsystem, 5, 21, 22
Power-ON Reset, 52
Printer, 17, 34, 35, 36, 37, 52, 84, 88, 89, 91, 96, 102, 103, 112, 116, 117, 128, 139, 147, 155, 157, 159, 160, 163, 164,

166, 168, 169, 176, 178, 185, 190, 192, 263, 299
Printer Port, 164, 185
Programmable Alarm, 7
Programming, 5, 6, 7, 25, 27, 32, 33, 36, 37, 40, 41, 44, 45, 48, 60, 62, 64, 112, 137, 297
Prt Sc (Print Screen Key), 291, 296
PUT_CHR, 10
PUT_STR, 10

R
RAM, 17, 20, 23, 24, 58, 62, 75, 76, 108, 133, 225, 242, 243, 246, 280, 300
RD_LCD_STRNG, 10
READ_ALARM, 10
READ_DATE, 10
READ_TIME, 10
Recharge (i.e. Batteries), 21
References, 11
REMOVE_DIRECTORY, 10
RESET, 5, 10
RESET Button, 21
RESET_ALARM, 260
RETRIEVE_DISPLAY_STATUS, 10, 261
ROM Monitor, 2, 3, 8, 14, 24, 56, 74, 109, 110, 139, 146, 261, 267, 301
RUN PCMCIA SHELL, 111

 227

S
S28 Records, 96, 97, 100, 218, 277
SBREAK, 10
Schematics, 34, 38, 42, 44, 51
SEGA, 2, 5, 12, 46, 48, 170, 283, 299

Controller, 5, 7, 8, 11, 12, 13
SELECT_COMMON_BAUD_RATE, 10, 32, 36, 44, 113
SELECT_DISK, 10
SEND_BYTE_TO_PC, 10, 142, 265
SEND_CR, 10
SEND_HEX_OUT, 10
SEND_SPACE, 10
Serial, 5, 7, 8, 11, 23, 33, 37, 41, 45, 112, 114, 140, 141, 176, 186, 187, 265, 284
Serial Port Connectors, 5, 23

Keyboard, 5, 7, 8, 12, 13, 23
Modem, 5, 7, 8, 12, 13, 23, 33, 37, 38, 40, 41, 45, 71, 112, 118, 158, 183, 284, 300
PC Link, 5, 7, 8, 12, 23, 42, 44, 56, 83, 96, 97, 100, 101, 106, 112, 120, 300
Printer, 5, 8, 9, 12, 13, 23, 34, 36, 112, 117, 164, 185, 284, 300

Serial Ports, 17, 18, 33, 34, 37, 38, 41, 42, 45, 58, 112, 113, 158, 263
Baud Rate Generation, 7, 112
Pinouts, 11, 283
Programming Consideration, 112

SET BREAKPOINT, 6
SET_ALARM, 10
SET_Breakpoint, 10
SET_DATE, 10, 60, 133, 140, 269
SET_TIME, 10, 60, 133, 140, 270
Setup Menu, 12
SETUP MENU, 6, 66, 67, 69, 70, 71, 72, 73, 78, 107

DISPLAY & SET ALARM, 6, 12
DISPLAY & SET DATE, 6
DISPLAY & SET TIME, 6
Initialize Modem, 6
View Modem Setup, 6

SG ProPad, 2
Game Controller, 5

Slow (Default) Clock, 62
Software, 4, 21, 24, 25, 30, 43, 44, 46, 47, 58, 59, 62, 112, 113, 118, 134, 135, 139, 147, 148, 178, 189, 192, 196, 210,

211, 212, 213, 214, 215, 216, 217, 218, 222, 261, 268, 280, 281
SOFTWARE VERSION, 6
Stack, 23, 300
Status Display Line, 61
STRCMP, 10
Support Subroutines, 7, 8, 29, 32, 36, 40, 44, 48, 60, 62, 113, 116, 117, 118, 120, 121, 122, 124, 127, 128, 129, 133,

134
Switch

ON/OFF, 21, 22, 24, 48, 58, 61, 121, 283
System Functions, 7
System Initialization, 56
System Management, 6
System Status Bar, 6, 12, 14, 54, 55, 167

T
T6963C

Toshiba LCD Contoller, 26, 27, 30, 122, 123, 153, 284, 299
TEST MENU, 6, 84, 85, 86, 87, 88, 90, 91, 92

DTMF TEST, 6
GAME CONTROLLER, 6
KEYBOARD TEST, 6

 228

MODEM TEST, 6
PRINTER TEST, 6
SOFTWARE VERSION, 6

TEST PRINTER, 6
Time-Of-Day Clock/Calendar, 6, 7
tone, 17, 86, 129, 188, 204, 248, 250, 251
Toshiba

T6963C LCD Controller, 2, 26, 122, 126

U
UPPER_CASE, 10

V
Vector Table, 8
VERSION, 10
VIEW MODEM SETUP, 6, 72
Voltage Detection Circuitry, 6
VOLUME Control, 5, 22

W
W65C02 (Microprocessor), 2, 15, 278, 280
W65C134 (Micro-Controller), 2, 31, 280
W65C265 (Micro-Controller), 2, 17, 20, 21, 22, 24, 31, 33, 34, 37, 38, 41, 42, 45, 51, 52, 62, 109, 112, 113, 129, 196,

209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 222, 260, 268, 278, 279, 280, 284
W65C816 (Microprocessor), 2, 15, 17, 278, 281
Warnings, 33, 37, 41, 277
Western Design Center, Inc., 2, 4, 15, 21, 148, 282, 297
WR_3_ADDRESS, 11
WR_LCD_STRNG, 11
WRITE_LCD_CHARACTER, 11
WRITE_PIXEL, 11

X
XS28IN, 11, 139, 277

